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detection, high speed and high information transfer rate can be 
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for identifying optimal combinations of electrode signals that can-
cel strong interference signals in the EEG. Data from a test group 
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frequencies, showed improvement of both classification accuracy 
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I. INTRODUCTION

Studies on the development of the Brain-Computer Inter-
faces (communication systems, that do not depend on the
brain’s normal output pathways of peripheral nerves and
muscles [2]) have more than 20-year history. BCI devices may
allow people with disabilities, including paralysed people, use
the computer and other technical equipment, on a par with
other users. Over the years, most widely represented group of
devices are non-invasive BCI systems with electroencephalo-
graphic (EEG) brain activity monitoring.

At the moment, the most commonly used EEG-based
BCI systems employ event-related synchronization of µ and
β rhythms (ERD/ERS), event-related potentials (ERP) and
steady-state visual evoked potentials (SSVEP). Information
transfer rate (ITR, introduced in [3]) is used by majority of the
BCI laboratories and research groups to evaluate BCI system
performances. This measure depends on three factors: speed,
accuracy and number of targets. It is proved, that currently the
SSVEP approach provides the fastest and the most reliable
communication paradigm for the implementation of a non-
invasive BCI system [4].

High speed and accuracy, sufficient number of targets for a
particular task are essential for BCI system in order to become
a practical device. Today a number of signal processing

methods for detection and extraction of SSVEPs exist. From
simple methods for detecting a single frequency component
in a single electrode signal [5], through most widely used
spectrum analysis methods [6], [7] up to multichannel spatial
filtering and detection methods [8], [1].

In this paper, a novel approach for multichannel detection
of SSVEP responses is proposed. System, after a simple cali-
bration session, is able to work asynchronously with improved
(in relation to spectrum analysis method) detection speed and
accuracy (thus higher ITR).

The paper is organized as follows. The second section dis-
cusses the details of the proposed method. Off-line experiment
conducted to prove the algorithm quality are presented in the
third session. Fourth section contains results and discussion.
Conclusions are presented in the last section.

II. DETECTION METHOD

In this section, the proposed Cluster Analysis Canonical
Correlation (CACC) method for detection of SSVEPs is
discussed. It is based on the coefficients derived from the
Canonical Correlation Analysis (CCA) which is described in
what follows.

A. Canonical Correlation Analysis

CCA method is used for finding the correlations between
two sets of multi-dimensional variables. It was first used for
SSVEP detection in [1] and was further developed in [9].

CCA method seeks for a pair of linear combinations w and
v, for two sets of data Y and X, such that the correlation

ρ1 = cor(S,U) (1)

between the first pair of canonical variables S = wTY
and U = vTX is maximized. Consecutive pairs of linear
combinations, canonical variables and canonical correlation
coefficients can be obtained, but the maximum number of pairs
equals the number of variables in the smallest of two sets (Y
and X).

As far as the CCA method is used for SSVEP detection:
Y refers to the set of Ny multi-channel EEG signals and X
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Fig. 1: An illustration for usage of the CCA method in
EEG signal analysis. Matrix Y is where data from Ny EEG
channels is stored. X is an ideal, reference SSVEP response,
containing both sinus and cosinus components for Nh har-
monics.

refers to the set of 2Nh reference signals (Fig. 1). In the rows
of the X reference matrix, the sinus and cosinus components
for all Nh harmonics of the stimulation frequency are stored:

X =




sin(2πft)
cos(2πft)

. . .
sin(2πNhft)
cos(2πNhft)



. (2)

CCA finds the maximum canonical correlation with respect
to weight vectors w and v by solving the following problem:

max
w,v

ρ =
cov[S,U]√
var[S] var[U]

=
E[SU]√

E[S2]E[U2]

=
E[wTYXTv]√

E[wTYYTw]E[vTXXTv]
. (3)

When CCA is used in frequency recognition of the SSVEP-
based BCI system, where there are Nf targets (stimulus
frequencies f1, f2, . . . , fNf

), the same number of reference
matrices must be used (Fig. 2).

CCA

CCA

CCA

MAX

C
la

ss
ifi

er
 o

ut
pu

t

Fig. 2: An illustration for usage of the CCA method in different
frequency components recognition of the SSVEP-based BCI
where there are Nf targets. Xi is the response reference matrix
for the i-th stimulus frequency.

For each pair of multi-channel EEG and reference signals,
a maximum canonical correlation coefficient is obtained and
it can be used for frequency recognition. As proposed in [9]
user’s command is recognized as

C = max
i

ρi, i = 1, 2, . . . , Nf , (4)

where ρi is the CCA coefficient obtained with the reference
signal frequency being f1, f2, . . . , fNh

.

B. Encountered CCA problems

Original CCA method, even in conjunction with thresh-
olding of maximum canonical correlation coefficients for
each stimulus frequency, does not seem reliable in practical,
asynchronous SSVEP BCI system. Main problem is related
to strong dependence of measured EEG signals against user
psychophysical state (Fig. 3). This state changes with the on-
going measurement session and between different days (when
user eg. did not sleep well). In such cases, the background,
non-stimulated EEG activity is increased. Brief moment of
relaxation often improves recorded signal quality, but this is
usually only a short-term effect.
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Fig. 3: Comparison of the classification results of the relevant
parts of the signal for the AL1 user in two test sessions. In
the second case wrong system decisions were marked red.
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Fig. 3: Comparison of the classification results of the relevant
parts of the signal for the AL1 user in two test sessions. In
the second case wrong system decisions were marked red.
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In Fig. 3b it is clearly visible that all of the canonical
correlation coefficients have greater variability over time (often
reaching established threshold value, resulting in false detec-
tions). In this particular example SSVEP BCI system is not
able to distinguish between working and idle state classes
properly. There is also only a little margin to rise threshold
value due to the low canonical correlation coefficient values
in segments which involved stimulation.

C. Cluster Analysis Canonical Correlation

Original CCA method uses a single canonical correlation
coefficient (with the highest value) for each of the Nf SSVEP
response patterns. CACC method uses three highest valued
correlation coefficients as features. Detection and idle states
can be accurately identified with k-means cluster analysis
performed separately in each of the feature spaces (Fig. 4).

0
0.2

0.4
0.6

0.8

0

0.1

0.2

0.3

0.4
0

0.05

0.1

0.15

0.2

0.25

ρ1

ρ2

ρ 3

Fig. 4: Sample result of the k-means cluster analysis in the
correlation coefficients feature space. Idle class was marked
red, detection class was marked blue. Centroids of both classes
were marked green.

Distance which can be measured between centroids of both
detection and idle classes in feature spaces for each stimulus
frequency, varies between the subject and frequency used for
stimulation. Its value must be determined during the training
phase, therefore BCI system work should be divided into two
stages:

1) calibration session: At this stage (Fig. 5) the objective of
the algorithm is to identify the distances between centroids of
detection and idle classes. This value is characteristic for each
of the frequencies used for stimulation. The user is instructed
to move his/her eyes (but not faster than every 5 seconds)
between all stimulation symbols.

In the first step, a set of response patterns for each of the
stimulation frequencies used (Xi, i = 1, 2, ..., Nf ) is built. As
a result of canonical correlation of Ny EEG source channels in
the detector window Y sequentially with patterns Xi, one gets
sets of three factors: ρ1i, ρ2i and ρ3i. Each of the sets can be
represented as a point ρi in the the feature space constructed
on the basis of canonical correlation coefficients of the source
EEG data with the i-th response pattern.

Along with each successive point ρi in particular feature
space, k-means cluster analysis is performed and mutual

K-means cluster 
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state class 
centroids distance

CCA
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ρ11, ρ21, ρ31
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Fig. 5: System in calibration mode.

distance between two classes (detection and idle state) is
examined. Euclidean metric is used:

d(Bi, Di) =

√√√√
3∑

j=1

(ρB,ji − ρD,ji)2, (5)

where Bi and Di denote the points where the idle and detec-
tion class centroids lay in the i-th feature space. Calibration of
the frequency fi ends when the Bi and Di centroid distance
is large enough:

d(Bi, Di) ≥ β (6)

and after adding e.g. the last 25 points to appropriate feature
space, the distance was not changed by more than 10%.

Based on the analysis of recorded EEG data and our
practical investigations, β = 0.25. Its value is a compromise
between the accuracy (especially for lower quality signals) and
the time of detection. Too high β value results in increased
number of false negative errors, and too small increases false
positives.

The training session ends upon completion of the calibration
for all Nf frequencies. If the calibration procedure lasts over
one minute, the system reports a problem with particular
frequency.

2) working mode: This is the target operating mode, in
which device is used for communication (Fig. 6). All cali-
brated data (locations of the detection and idle class centroids
in each of Nf feature spaces) are used to improve classification
at this stage.
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Like in the calibration mode, as a result of canonical
correlation of the EEG source data (Y) with subsequent
response patterns Xi, sets of three coefficients: ρ1i, ρ2i and ρ3i
(a point ρi in a three dimensional feature space) are obtained.
Each point is classified (nearest neighbours method) to one of
the classes Bi or Di.

In Fig. 3b it is clearly visible that all of the canonical
correlation coefficients have greater variability over time (often
reaching established threshold value, resulting in false detec-
tions). In this particular example SSVEP BCI system is not
able to distinguish between working and idle state classes
properly. There is also only a little margin to rise threshold
value due to the low canonical correlation coefficient values
in segments which involved stimulation.

C. Cluster Analysis Canonical Correlation

Original CCA method uses a single canonical correlation
coefficient (with the highest value) for each of the Nf SSVEP
response patterns. CACC method uses three highest valued
correlation coefficients as features. Detection and idle states
can be accurately identified with k-means cluster analysis
performed separately in each of the feature spaces (Fig. 4).
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Fig. 4: Sample result of the k-means cluster analysis in the
correlation coefficients feature space. Idle class was marked
red, detection class was marked blue. Centroids of both classes
were marked green.

Distance which can be measured between centroids of both
detection and idle classes in feature spaces for each stimulus
frequency, varies between the subject and frequency used for
stimulation. Its value must be determined during the training
phase, therefore BCI system work should be divided into two
stages:

1) calibration session: At this stage (Fig. 5) the objective of
the algorithm is to identify the distances between centroids of
detection and idle classes. This value is characteristic for each
of the frequencies used for stimulation. The user is instructed
to move his/her eyes (but not faster than every 5 seconds)
between all stimulation symbols.

In the first step, a set of response patterns for each of the
stimulation frequencies used (Xi, i = 1, 2, ..., Nf ) is built. As
a result of canonical correlation of Ny EEG source channels in
the detector window Y sequentially with patterns Xi, one gets
sets of three factors: ρ1i, ρ2i and ρ3i. Each of the sets can be
represented as a point ρi in the the feature space constructed
on the basis of canonical correlation coefficients of the source
EEG data with the i-th response pattern.

Along with each successive point ρi in particular feature
space, k-means cluster analysis is performed and mutual
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distance between two classes (detection and idle state) is
examined. Euclidean metric is used:

d(Bi, Di) =

√√√√
3∑

j=1

(ρB,ji − ρD,ji)2, (5)

where Bi and Di denote the points where the idle and detec-
tion class centroids lay in the i-th feature space. Calibration of
the frequency fi ends when the Bi and Di centroid distance
is large enough:

d(Bi, Di) ≥ β (6)

and after adding e.g. the last 25 points to appropriate feature
space, the distance was not changed by more than 10%.

Based on the analysis of recorded EEG data and our
practical investigations, β = 0.25. Its value is a compromise
between the accuracy (especially for lower quality signals) and
the time of detection. Too high β value results in increased
number of false negative errors, and too small increases false
positives.

The training session ends upon completion of the calibration
for all Nf frequencies. If the calibration procedure lasts over
one minute, the system reports a problem with particular
frequency.

2) working mode: This is the target operating mode, in
which device is used for communication (Fig. 6). All cali-
brated data (locations of the detection and idle class centroids
in each of Nf feature spaces) are used to improve classification
at this stage.
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Like in the calibration mode, as a result of canonical
correlation of the EEG source data (Y) with subsequent
response patterns Xi, sets of three coefficients: ρ1i, ρ2i and ρ3i
(a point ρi in a three dimensional feature space) are obtained.
Each point is classified (nearest neighbours method) to one of
the classes Bi or Di.
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If, during the classification in each of Nf feature spaces,
none or exactly one point ρi was classified to Di class, system
will detect respectively class zero (idle state) or number i of
particular feature space. If more than one point, represented by
the canonical correlation analysis coefficients of source data
and response pattern Xi, will be qualified to the detection
classes, a conflict occurs.

Conflict situations are solved by using the distance of each
of the conflicted points ρi from the point laying on the line
passing through centroids of both Bi and Di classes, and lying
half-way between them. The classifier output is determined as
the number of the i-th feature space in which the distance was
the greatest.

After successful detection of responses at any of the stim-
ulus frequencies, all data in detector window Y are replaced
with zeros. This prevents multiple detection of the same
symbol. In addition, after each classification, 700 ms of the
EEG data will not be utilized (classifier will not take any
decisions). This will give the user of the BCI system time
for gaze shifting.

III. OFFLINE EXPERIMENTS

The experiments were carried out at the Institute of Elec-
tronics, Technical University of Lodz. Fig. 7 presents the
layout of the measurement stand.
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Fig. 7: Layout of the measurement stand: visual stimulator (1),
subject (2), EEG recording device (3) and operator (4).

Subjects sat in the front of a visual stimulator (described
in the next section) on a comfortable, ergonomic chair. Mea-
surements were carried out in a room with a window on the
south side, curtained with a light impermeable material blind
and a standard fluorescent light switched on. Light conditions
during all experiments were the same.

A. Subjects

Twenty one healthy subjects (ten women and eleven men,
age range 16-33 years, with the average of 22.2 years and a
standard deviation of 3.4 years) participated in this study. For
each subject, two measurements were carried out on different
days.

Four subjects previously used our BCI system. None of
the subjects had neurological or visual disorders (glasses or
contact lenses were worn where appropriate). Subjects did not
receive any financial rewards.

In the early stages of the experiment, users were qualified
to one of three groups:

1) Group A (best results, 5 subjects): Subjects who in most
cases had earlier contact with the device (in our previous
studies and tests).

2) Group B (average results, 11 subjects): The most widely
represented group. Subjects who were not familiar with the
idea of a BCI device, but actively participated in the experi-
ments.

3) Group C (poor results, 6 subjects): Subjects with con-
centration problems or very high unstimulated, spontaneous
brain activity

This classification helped to investigate system parameters
in relation to a specific group of users.

B. Visual Stimulator

A universal, computer driven LED stimulator was used
for stimulation. Each stimulation symbol (Fig. 8) consisted
of three LEDs: two stimulation lights with a diameter of
5mm positioned on the lower right and lower left quarter
of the visual field of each eye retina and one fixation light
with a diameter of 3mm placed in the center of visual field.
Distance from visual stimulator to subject eyes was equal to
50 centimetres.
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Fig. 8: A view of stimulating lights (SL, SR) and a fixation
light (F) on the screen of stimulator.

Stimulation lights flash with the same frequency alterna-
tively in phase (alternate half-field stimulation technique [10]).
Fixation light is used for two purposes: the subject is expected
to concentrate his/her sight on it; additionally it provides
a feedback information about amplitudes of corresponding
SSVEPs detected in the subject EEG signal.

Visual stimulator had five sets of LEDs forming stimulation
symbols in five different colors (each set had stimulation
and fixation LEDs of the same color): white, blue, green,
yellow and red. Luminous intensity of each LED used was
approximately 1000mcd.

C. EEG Recording

Equipment from g.tec (Graz, Austria) was used for EEG
measurements: g.USBamp biosignal amplifier, g.GAMMAbox
active electrode driver and g.GAMMAcap with sixteen
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Subjects sat in the front of a visual stimulator (described
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surements were carried out in a room with a window on the
south side, curtained with a light impermeable material blind
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during all experiments were the same.
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contact lenses were worn where appropriate). Subjects did not
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idea of a BCI device, but actively participated in the experi-
ments.

3) Group C (poor results, 6 subjects): Subjects with con-
centration problems or very high unstimulated, spontaneous
brain activity

This classification helped to investigate system parameters
in relation to a specific group of users.

B. Visual Stimulator

A universal, computer driven LED stimulator was used
for stimulation. Each stimulation symbol (Fig. 8) consisted
of three LEDs: two stimulation lights with a diameter of
5mm positioned on the lower right and lower left quarter
of the visual field of each eye retina and one fixation light
with a diameter of 3mm placed in the center of visual field.
Distance from visual stimulator to subject eyes was equal to
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Fig. 8: A view of stimulating lights (SL, SR) and a fixation
light (F) on the screen of stimulator.

Stimulation lights flash with the same frequency alterna-
tively in phase (alternate half-field stimulation technique [10]).
Fixation light is used for two purposes: the subject is expected
to concentrate his/her sight on it; additionally it provides
a feedback information about amplitudes of corresponding
SSVEPs detected in the subject EEG signal.

Visual stimulator had five sets of LEDs forming stimulation
symbols in five different colors (each set had stimulation
and fixation LEDs of the same color): white, blue, green,
yellow and red. Luminous intensity of each LED used was
approximately 1000mcd.

C. EEG Recording

Equipment from g.tec (Graz, Austria) was used for EEG
measurements: g.USBamp biosignal amplifier, g.GAMMAbox
active electrode driver and g.GAMMAcap with sixteen
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Ag/AgCl active electrodes. Seven electrodes over the primary
visual cortex (positions PO7, PO3, O1, OZ, O2, PO4 and
PO8) and nine electrodes evenly distributed over the remaining
cerebral cortex (positions P3, PZ, P4, C3, CZ, C4, F3, FZ and
F4) were used for recording. A ground electrode was placed
on CPZ position. A reference electrode was placed on right ear
lobe (position A2). The EEG signals were bandpass filtered
between 2.0-60.0 Hz with a notch filter for 50 Hz power line
frequency suppression, amplified and sampled at 600 Hz.

EEG signals were recorded with a home-made software
package - BioStudio [11] which was able to drive visual
stimulator and processed measured signals in order to compute
biofeedback information for stimulation symbols.

D. Experimental paradigm

Subjects were instructed to focus their gaze on fixation
LED and flickering lights below it to produce SSVEPs. Each
measurement lasted for several minutes and consisted of
five stimulus sequences (one sequence for each color, only
one stimulation symbol switched on at a time). The first
sequence began a few seconds after starting the measurement
(time required for stabilization of electrode-skin connection
impedance and possible adjustments of subjects’ position on
the chair to reduce the EMG signals). Stimulation frequencies
were chosen to match the discrete Fourier transform frequen-
cies used in the subsequent analysis (in order to minimize
spectral leakage). Each sequence contained 27 different stim-
ulation frequencies in the range of about 7–47 Hz.

Each stimulation lasted eight seconds, followed by a 2-
second pause before the next stimulation (Fig. 9). Additionally
a brief pause followed each sequence (several up to tens of
seconds). This pause was intended for position adjustments on
the chair and subject relax with eyes closed (EEG signal was
still being recorded).

Sequence 1 – white (4:30 min)
5:00 t (m:ss)

Stimulation 1 – 7,03 Hz (8 s)

1:00 2:00 3:000:00 4:00

automatic sequence generation

6:00 7:00 8:00

. . . Sequence 2 – blue (4:30 min)

automatic sequence generation

manually controlled pause for relax and position adjustments

9:00

t (s)0 4 8 10 14 18

Stimulation 2 – 8,59 Hz (8 s)
Pause 
(2 s) . . . 

Fig. 9: Timing of each trial.

Binary signal from visual stimulator indicating stimulation
state (on/off) was recorded along with the subject EEG signal
from all sixteen channels.

The original EEG data for subjects were re-sampled (Fs =
200 Hz) and divided into shorter fragments, containing sev-
eral stimulation patterns. Algorithm was tested with window
lengths of 1.28, 2.56 and 5.12 seconds and data window moved
with a step of 0.16 s.

Results of the proposed method were compared to standard
spectrum analysis SSVEP detection approach: power spectral
density of EEG signal was computed in the sliding window
(frequency resolution of about 0.78 Hz). For each predefined

TABLE I: Results in Group A

accuracy [%] det. speed [s] ITR [bpm]Window
Length [s] BBC CACC BBC CACC BBC CACC

1.28 91.19 90.27 2.55 2.28 40.38 43.82

2.56 94.12 93.05 2.47 2.52 45.74 43.29

5.12 91.53 94.88 4.02 3.35 25.85 34.52

discrete frequency of stimulation a signal to background ratio
(SBR) was estimated [12]. The frequency of the maximum
SBR, after it was compared with the threshold value, was
decided to be the intended target of the user. This algorithm
was executed for all possible bipolar source electrode combi-
nations:

C2
Ny

=

(
Ny

2

)
=

Ny!

2!(Ny − 2)!
(7)

in order to find Best Bipolar Combination (BBC). In analysed
case (Ny = 16) 120 bipolar channels had to be processed.

IV. RESULTS AND DISCUSSION

Binary markers (stimulation on and off events) stored in par-
allel with the EEG data and the known stimulation sequence
for each color were used to verify performance of the proposed
detection algorithm. Classification results for each user were
assessed in terms of accuracy, average detection time and the
information transfer rate and were afterwards averaged in each
of the subject groups.

A. Group A

High accuracy of both SSVEP detection methods is proved
(Table I). The increase in detection accuracy with the increase
of window length is negligible. Measured mean detection
times increase as the window length is extended (this is a
known problem an can be easily solved in practical system by
use of multiple, different length parallel detectors). Informa-
tion transfer rates are similar in case of both algorithms.

B. Group B

The biggest increase of accuracy of the CACC method over
the BBC algorithm was observed in this group (Table II).
Depending on the window length, it was from 7 up to 11%.
There is also a noticeable rise of detection accuracy with the
increase of window length. As in the previous group, average
detection times are similar (particularly for shorter windows),
but detection usually took about 0.8–1.0 second longer. As far
as the information transfer rate is considered, CACC method
seams to be clearly better than BBC because of both: shorter
detection times and higher accuracy.

C. Group C

Increase of detection accuracy for the CACC method over
the BBC algorithm in this group was from 5 up to 8% (Ta-
ble III). Similarly to the first group, the increase in detection
accuracy with the increase of window length is negligible. As
far as the average detection speed is considered, BBC method

Ag/AgCl active electrodes. Seven electrodes over the primary
visual cortex (positions PO7, PO3, O1, OZ, O2, PO4 and
PO8) and nine electrodes evenly distributed over the remaining
cerebral cortex (positions P3, PZ, P4, C3, CZ, C4, F3, FZ and
F4) were used for recording. A ground electrode was placed
on CPZ position. A reference electrode was placed on right ear
lobe (position A2). The EEG signals were bandpass filtered
between 2.0-60.0 Hz with a notch filter for 50 Hz power line
frequency suppression, amplified and sampled at 600 Hz.

EEG signals were recorded with a home-made software
package - BioStudio [11] which was able to drive visual
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state (on/off) was recorded along with the subject EEG signal
from all sixteen channels.
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200 Hz) and divided into shorter fragments, containing sev-
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(SBR) was estimated [12]. The frequency of the maximum
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IV. RESULTS AND DISCUSSION

Binary markers (stimulation on and off events) stored in par-
allel with the EEG data and the known stimulation sequence
for each color were used to verify performance of the proposed
detection algorithm. Classification results for each user were
assessed in terms of accuracy, average detection time and the
information transfer rate and were afterwards averaged in each
of the subject groups.

A. Group A

High accuracy of both SSVEP detection methods is proved
(Table I). The increase in detection accuracy with the increase
of window length is negligible. Measured mean detection
times increase as the window length is extended (this is a
known problem an can be easily solved in practical system by
use of multiple, different length parallel detectors). Informa-
tion transfer rates are similar in case of both algorithms.

B. Group B

The biggest increase of accuracy of the CACC method over
the BBC algorithm was observed in this group (Table II).
Depending on the window length, it was from 7 up to 11%.
There is also a noticeable rise of detection accuracy with the
increase of window length. As in the previous group, average
detection times are similar (particularly for shorter windows),
but detection usually took about 0.8–1.0 second longer. As far
as the information transfer rate is considered, CACC method
seams to be clearly better than BBC because of both: shorter
detection times and higher accuracy.

C. Group C

Increase of detection accuracy for the CACC method over
the BBC algorithm in this group was from 5 up to 8% (Ta-
ble III). Similarly to the first group, the increase in detection
accuracy with the increase of window length is negligible. As
far as the average detection speed is considered, BBC method
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TABLE II: Results in Group B

accuracy [%] det. speed [s] ITR [bpm]Window
Length [s] BBC CACC BBC CACC BBC CACC

1.28 63.15 70.74 3.39 3.02 11.24 17.18

2.56 68.26 79.65 3.26 3.15 14.46 22.58

5.12 68.33 78.51 5.06 4.15 9.34 16.51

TABLE III: Results in Group C

accuracy [%] det. speed [s] ITR [bpm]Window
Length [s] BBC CACC BBC CACC BBC CACC

1.28 45.07 50.98 4.02 5.06 3.44 2.14

2.56 47.23 53.22 4.75 5.12 3.39 4.06

5.12 47.12 55.17 5.35 5.72 2.99 4.54

is faster (difference of about 1 s for the shortest window and
about 0.4 s in remaining cases).

V. CONCLUSIONS

Results clearly show that research on multichannel detection
methods are important and can significantly improve classi-
fication accuracy, detection times and overall communication
speed. The proposed detection method improves the classifica-
tion accuracy in the groups of subjects with the average (Group
B) and poor (Group C) results. In the group of users with the
best results (Group A), there was no clear improvement of the
SSVEP detection accuracy. Average detection times for both
algorithms are similar in most cases (but there were differences
of up to 1 second). Information transfer rate in many cases
(especially for Groups B and C) was higher for the CACC
method, which is due to greater classification accuracy of this
method. What is important, only a short off-line calibration
session was necessary to achieve such results.

At the moment many of the BCI systems are at the stage of
laboratory demonstrations. This is mainly due to high user
variation, BCI illiteracy phenomenon and low communica-
tion speeds (low ITR). New spatial filtering and detection
methods will make it possible to overcome this limitations.
In the presented research, each of 21 subjects was able to
communicate in the off-line experiments and 16 subjects
(Groups A and B) reached substantial information transfer
rates. These results encourage further development of the
proposed detection method and its implementation in the on-
line BCI system, what will be the subject of our future work.
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method, which is due to greater classification accuracy of this
method. What is important, only a short off-line calibration
session was necessary to achieve such results.

At the moment many of the BCI systems are at the stage of
laboratory demonstrations. This is mainly due to high user
variation, BCI illiteracy phenomenon and low communica-
tion speeds (low ITR). New spatial filtering and detection
methods will make it possible to overcome this limitations.
In the presented research, each of 21 subjects was able to
communicate in the off-line experiments and 16 subjects
(Groups A and B) reached substantial information transfer
rates. These results encourage further development of the
proposed detection method and its implementation in the on-
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