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ABSTRACT 

Sound has been an overlooked modality in visualization.  Why?  
Because it is ephemeral.  We experience it as it happens, often 
in community with others.  Then, the sound is gone.  
Furthermore, sound in human communication is 
multidimensional and includes the semantic meaning of words, 
the meaning of expressive verbal gestures (paralingual and 
prosodic components), the nonvocal gestures, and relational 
gestures.  Even though we are able to record sound and play it 
back, we typically focus more on the semantic meaning of 
words.  In this paper, we describe a voice analytics toolkit and 
present visualizations that focus on the relational and 
expressive verbal gestures in speech.  By making the 
overlooked channels of human communication visible and 
persistent, we make it possible to see beneath the surface of our 
words.  This insight will potentially enable the development of 
new applications for speech therapy, the quantization and 
visualization of vocal trends common to speakers with medical 
conditions such as autism spectrum disorder (ASD), the 
characterization and visualization of communication patterns 
common in different kinds of relationships and cultures, and the 
development of new kinds of creative, multimodal works.  

1. INTRODUCTION 

Spoken language, or more generally, communication, exists 
only in the moment, and cannot be referenced, searched, or 
analyzed directly.  It etches a reflection of itself into the 
mutable memories of people, and fades away in time.  Attempts 
to retrieve it may fail entirely, produce partial recall, or produce 
a distorted, inaccurate representation of the original.  Spoken 
communication has all of the properties of ideas in the 
preliterate society described by Walter Ong [1].  Without 
literacy, ideas are limited to what one can recall cognitively, 
and what one can perceive at any given moment in the world.  
Unless communications are recorded, they are easily distorted 
and forgotten, and are not available for reference in the world.  
Furthermore, even when communications are recorded via 
audio and/or video recording, they are not captured in a form 
that supports easy analysis of the whole, because in order to 
reference them, one has to play or search through the sequence 
once again.  The experience is moment-by-moment. 

If we look at spoken communication more closely, its 
streaming, temporal nature is even more apparent.  Spoken 
communication has a semantic verbal channel (the meaning of 
the words which are uttered), an expressive verbal channel (the 
paralingual and prosodic features of language), the nonvocal 

(gestures, eye focus, body posture, etc.), and the relational (the 
manner in which two more individuals connect and reflect).   

Considerable work has been done in interpreting and 
recording the semantic channel.   Sound recording, indexing, 
and playback are common, everyday events.  Live speech 
recognition tools are available, and speech recognition 
continues to be an active research topic [2].  Nonvocal 
communication, particularly gesture recognition, is a current 
research topic [3] as well.  Work on the other two channels, 
however, lags.   

We focus on the analysis and visualization of the expressive 
verbal and relational channels in this paper. We are particularly 
interested in the paralingual (pitch, rate, volume, quality, etc.), 
phonetic (sound content), and prosodic (rhythm, emphasis, and 
intonation) qualities of voice.  The paralingual cues convey 
emotion, emphasis, humor, and sarcasm.  They tell the listener 
how one is feeling and what he thinks about what is being said.  
For example, unless someone is a tax accountant, the phrase ÒI 
love doing taxesÓ is likely to be a sarcastic statement.  Imagine 
a slow speaking rate, sharply-articulated, extra emphasis on the 
word Òlove,Ó the word ÒloveÓ spoken at an exaggerated higher 
pitch, and the end of the phrase dropping in pitch.   These cues 
can be either conscious or unconscious to the speaker.  Most 
listeners, however, perceive these cues very well, and they will 
hear the paralingual information before the semantic meaning 
of the words.  Paralingual cues outside the norms can also 
signal medical conditions; many people with ASD, for 
example, have incorrect or unusual prosody and flat intonation. 

We also focus on the interactive, social, vocal elements in a 
dyadic conversation.  These elements represent the relationship 
between individuals in the conversation, and are apparent in the 
turn-taking behavior, use of silence, interruptions, modulation 
of pitch and amplitude, and entrainment.  We analyze and 
visualize this subtle and vital information, to see beyond the 
words of spoken language. 

We believe that vocal visualization, particularly of the 
expressive verbal and relational channels, may be a useful tool 
in behavioral analysis, particularly of children with ASD.  
Many of the visualizations in this paper show discourse from 
actual screening sessions for autism.  We also believe that this 
kind of analysis and visualization will be even more powerful 
when speech is analyzed and visualized in conjunction with 
other signals, such as video and electrodermal activity (skin 
conductivity measurements).  These combined visual analytics 
may lead to improved diagnostic techniques for ASD, which 
could lead to earlier intervention and improved prognosis for 
these children.  We also intend to explore the use of these 
visualizations in the context of speech therapy.  People with 
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ASD often have varying degrees of speech difficulty, and 
especially have trouble with vocal inflection and other prosodic 
elements. Comparing a target speech pattern with an actual 
utterance both visually and aurally could help in the perception 
and performance of speech.  Furthermore, we intend to explore 
the use of our visual analytics in behavioral feedback.  Our 
tools could be used as a conversational mirror, to highlight 
paralingual and relational elements in human interaction.  
Often, people are not aware of their behavior in group 
interactions, the influences that they have, and the manner in 
which they are influenced by others.  Children with ASD have 
extreme difficulty picking up on conversational cues, and a 
conversational analytics tool and social mirror could help make 
social cues visible to them.  Finally, we believe that these 
techniques have applications in interactive art, and will enable 
artists to extend the impact of their works by combining visual, 
aural, and other modalities. 

This paperÕs contributions are the development of a toolkit 
for vocal analysis, and  visualizations of the expressive and 
relational elements of spoken communications. To put it in 
OngÕs terms, these contributions allow us to deal with spoken 
language at a new level of literacy. 

2. RELATED WORK 

Significant work has been done in visualizing sound, from 
many points of view, including conversation, speech sound, 
music, sound collections, and general sound classes.  Figure  
1a-c below shows a sampling of sound visualizations from our 
work and the most closely related work. 

 

Figure 1-a: A Sonic Shapes visualization of an adult and a 
very young child talking about trains.  The child imitates a 
train whistle here. 

 
Figure 1-b: From Bergstrom and KarahaliosÕ Conversation 
Clock [4,14], which shows the exchange among speakers in 
a conversation over time. 

 
Figure 1-c: From ChoÕs Takeluma [4].  Live speech maps 
spoken phonemes into forces which shape a string into a 
moving ÒscriptÓ. 

As you can see from the samples, the visualizations focus 
on either conversational elements, an individualÕs utterances, 
structure in sound, or similarity and difference among sounds. 
Sonic Shapes seeks to visualize both the conversational 
dimension and the expressive elements of speech sound. More 
detailed discussion of work in each category of sound 
visualization follows. 

Visualization of face-to-face (F2F) spoken conversation has 
many important elements. Most of this work shows when 
people speak, how much each person speaks, how loudly each 
person speaks, turn-taking, and simultaneous speaking. The 
Conversation Clock [5] shows the progression of a conversation 
over time via concentric clockwise circles.  It is apparent when 
each speaker speaks, when there is silence, when interruptions 
occur, and when normal handoff from one speaker to another 
occurs.  The relative amplitude of all speech over time is 
apparent, as is the relative amount of time each person speaks.  
Conversation Clusters [6] extracts the important 
words/concepts from speech, and displays them in relationship 
to one another.  When enough related words appear, they form 
visual groupings, or concept clusters. Okwechime et al. [7] 
analyze a combination of social signals in conversation, 
visualize a 7-dimensional Social Dynamic Model (SDM) in the 
form of concentric rings around 7 axes, where the size of the 
nodes at the intersection of axes and rings indicate the value of 
the dimension for a given person involved in the conversation. 

A similar body of work visualizes conversation, but focuses 
on text instead of live audio.  Some of these visualizations 
focus more on the semantic channel and follow topics of 
conversation and the relationships among the conversation 
topics and the people involved in them.  Angus et al. [8] create 
similarity matrices of concepts, comparing the concept under 
discussion at a given point in time with the concept under 
discussion at all other points in time.  Periodicities and 
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repetitions show as distinct diagonal patterns in the 
visualization.  Yet others show the structure of a conversation.  
For example, CrystalChat [9] combines the idea of a social 
networking graph with a structural representation of 
conversations.  A 3D hub-and-spoke visualization shows a 
personÕs conversations with others as the spokes, and the plane 
of the spoke shows the conversations as strings of beads, with 
each bead representing a message.  Darker beads indicate 
longer messages.  The color shading on the backplane gives 
information about the emotional content of the message (by 
analysis of emoticons). Anther work by Tat [10] visualizes 
conversation by extracting the character from a time-series 
conversation and presenting it in 2D static summary 
visualizations.  Pupyrev and Tikhonov [11] visualize online 
conversations with dynamic graph drawing using 
multidimensional scaling techniques, and show how their 
visualizations could help reveal temporal patterns.  Hansen et 
al. [12] focus on threaded conversation networks.  The Fugue 
[13] system likens conversation to a musical fugue, and focuses 
on the timing and paralingual elements of the conversation.  
The visualization stretches each personÕs words and cues over 
time, like music on a score, so that you can see who is 
speaking, and when.  Donath [14] describes a system that 
emulates F2F conversation in a room, in that the user navigates 
though the space in order to interact with others.  Only users 
who are in close proximity can be heard.  

A third body of work focuses on the vocal quality of an 
individualÕs speech.  Ueng [15] et al. provide Sammon 
mapping, parallel coordinates visualizations, and mappings of 
features onto a 2D polar coordinate plane.   LocuTourÕs [16] 
commercial product targets the speech therapy market, and 
provides visualizations and therapy plans suitable for 
addressing phonological problems. Hailpern [17,18] provides 
comparative visualizations of an actual utteranceÕs prosody vs.  
correct prosody.  This visualization features pitch contour and 
vocal stress in a set of target words.  Fell [19] visualizes 
syllables and infant vocalization age.  ChoÕs Takeluma [4] 
translates spoken phonemes into shape and motion.  It appears 
as though the energy of the voice shapes a flexible string into 
script.  In time, the energy dissipates, and the string returns to 
its original, flat shape, until activated by the next utterance. 

Music and generic sound visualizations are relevant here, 
too, because musical timbre is analogous to paralingual and 
prosodic elements of the voice.  Seidenberg [20] focuses on six 
features (centroid, spread, skewness, flux, bark-flux, centroid-
flux) and visualizes them 6 ways:  1) scatterplots, 2) slider 
plots, 3) histograms, 4) Lineto charts, 5) ÒriverÓ plots, which 
show the flow of sound features over time, and 6) a similarity 
matrix. Foote [21] presents the self-similarity matrix which 
shows periodicities and repetitions, and provides a structural 
summary of the sound components in the music.  Chan et al. 
[22] highlights musical voicing roles with layer braid diagrams, 
and structural elements and their relationships with a Òtheme 
fabricÓ diagram.  A Òcollapsed theme fabricÓ diagram shows 
both theme and voice in the same diagram.  WattenbergÕs 
beautiful Arc Diagrams [23] visualize the structure and 
periodicity in data sequences, including sound and music.  
Artistic performances, such as Messa di Voce [24], have 
included evocative, interactive voice visualizations as well.  
The various sections in this piece demonstrate multimodality, 

and include interactivity between speakers, voice and visuals, 
and full-body interactions with the visuals. 

Finally, work in sound collection visualization is 
significant, because its purpose is distinguishing and comparing 
sound character. The Sonic Browser [25] attempts to facilitate 
human browsing behavior by allowing user-defined mapping of 
features onto visual display components (x, y, color, shape of 
icon, size of icon), defining an aura (perceptual range), and 
plays anything that the user selects which is within the range of 
the aura.  Elements which are close to one another sound more 
similar than those that are far apart on the visualization, so the 
user can sample the sonic character of the space by selecting the 
range visually and listening.  Adamczyk [26] describes music 
genre browsing via data collected from social networks.  His 
visualization techniques range from simple 2D to immersive 
3D.  Morchen [27] visualizes timbre difference over sound 
collections via mapping to a physical terrain model.  The MEL-
IRIS project [28] presents a multiple views visualization 
featuring chroma, and Adiloglu [29] provides a sound 
taxonomy, and visualizes a Òspike codeÓ, which is a simplified 
time-frequency graph.   

Many of the existing sound visualizations are suitable for 
engineers and domain experts, but are not easy for other users 
to understand. Not all users, for example, know what a centroid 
and bark-flux are; and not everyone knows how to read a 
spectrogram.  Fewer still would know how to connect these 
representations with their voice, interpret the resulting 
measures, and understand why they might be important.  
Furthermore, the individual applications are limited in scope; 
none of them focus on both the expressive verbal and relational 
channels.  We present analytics and resulting visualization 
techniques that are suitable for both of these channels, and that 
map closely to perceived qualities in the voice.   

3. VISUALIZATIONS 

The visualizations below show phonetic sound quality, pitch 
contour, breathiness, noisiness, and sound amplitude. Time 
progresses on the horizontal axis, and increasing pitch along the 
vertical y axis.  Rising inflections curve upward, and falling 
inflections, downward.  The size of the graphic shows the 
relative amplitude (the larger the graphic, the louder the sound).  
Figure 2 below shows the color mappings used in the 
visualizations.  Obstruent, or noisy, consonants appear in blue, 
with the noisiest consonants having the most saturation.  
Sonorant consonants (the sounds which could be sung) appear 
in green, with the most sonorant options having the most color 
saturation.  All vowels are pink, with the most open vowels 
having the strongest saturation.  We chose to highlight the 
vowels with warm colors, because we thought that the 
sustained, singable quality of a vowel was more associated with 
warmth than the ÒcrunchyÓ articulations of consonants. 

 

Figure 2: Current color map for phonetic quality 
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Figure 3 shows a child saying ÒnoÓ and ÒnowÓ (similar 
words).  In the word Òno,Ó you can see the sonorant ÒnÓ, the 
relatively loud and extended ÒoÓ sound, and an aspiration of air 
at the end (shows as blue, a noisy consonant).  The childÕs 
voice has a slight inflection in pitch.  In the word Ònow,Ó you 
can still see the sonorant Òn,Ó but you can also see the child 
having some noisy air in the transition between the ÒnÓ and the 
ÒowÓ.  ÒNowÓ is harder for a very young child to say than ÒnoÓ.  
Note that the childÕs voice rises while saying this word (sounds 
like a question), and there is a small bit of noise at the end of 
the word.  The visualizations show the subtle sonic differences. 

 
Figure 3: Top: the word ÒnoÓ; Bottom: the word ÒnowÓ. 

Figures 4 and 5 below show a child and therapist in a 
screening session for autism.  The child is about 2 years old,  
and in the process of acquiring language.  They are building a 
toy sandwich together in an unstructured interaction.  The child 
is particularly fond of cheese, but canÕt say the word ÒcheeseÓ 
very well yet.  It comes out sounding like a noisy blend of 
ÒttssseesssÓ.  The adult is talking in a slow, sing-song voice to 
the child, with some of the sounds elongated.  The rise and fall 
of the adultÕs sing-song intonation is visible in Figure 4 in the 
words ÒLettuce, cheese.Ó  You can also see some possible 
entrainment, where the two parties move together to become 
more similar in manner of speech. Note the similarity of the 
word ÒturkeyÓ spoken by both parties in Figure 4.  

 
Figure 4: Building a toy sandwich, part 1 

In Figure 5, the adult is trying to encourage the child to 
include lettuce in the sandwich, but the child, who is not fond 
of lettuce, will have none of it.  Here, his speech becomes a 
very clear ÒNO ON!Ó   

 
Figure 5: building a toy sandwich, part 2 

Figure 6 below shows how the system could be used for 
speech therapy. The top panel shows the correct pronunciation 
of the word ÒlispÓ, while the bottom panel shows the word 
ÒlispÓ spoken with a lisp.  You can clearly see the difference 
between the correct ÒsÓ sound and the lisp, and you can see the 
effect that the lisp has on the preceeding vowel sound. 

 

Figure 6: Top = woman saying the word ÒlispÓ correctly; 
Bottom = same woman saying the word ÒlispÓ with a 
lisp. 

Figure 7 shows that the system can show differences in 
emotion and prosody. Here, the same speaker is saying ÒHello, 
worldÓ in the style of a statement and a question.  Note that the 
end of the statement is de-emphasized, but the end of the 
question is inflected and emphasized.  The speaker continues to 
play with her voice in the last two panels of Figure 7, this time 
saying ÒHello, worldÓ with different emotions.  The ÒboredÓ 
utterance has elongated vowels and sonorants, less inflection, is 
even in volume, and is less varied overall than the other 
utterances.  The ÒangryÓ statement clearly looks angry. 
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Figure 7: Top = person saying ÒHello, worldÓ as a 
statement; 2nd = same person saying ÒHello, worldÓ as a 
question; 3rd = same person saying ÒHello, worldÓ with 
bored emotion; Bottom = same person saying ÒHello, 
worldÓ with angry emotion. 

Earlier versions of the software included more detailed 
phonetic classification in the visualizations.  Figure 8 shows the 
color map for the earlier prototype, and Figure 9a-c show 
utterances by three different people (two men and one woman).  
We thought that showing that level of detail in the phonology 
might distract from our purpose of visualizing the paralingual 
dimension of the voice.  This more phonologically rich version, 
however, will still be useful in speech therapy applications, in 
creative works for aesthetic reasons, and anytime phonological 
detail is desired. Also note the that in figures 9a-c, the sampling 
rate was 44.1KHz, and the graphic resolution is 
correspondingly higher than in previous figures (sampling rate 
16KHz).  Finally, note that the earlier version of the color map 
uses warm colors for consonants and cool colors for vowels 
(opposite of the previous approach).  We thought that using 
warm colors wold draw the eye to the noisy, textured sounds 
here. 

 

Figure 8: Color map for early prototype 

 

Figure 9a: An adult male saying his name, ÒStephenÓ 

 

Figure 9b: another adult male, saying his name, ÒRajinderÓ 
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Figure 9c: An adult female saying ÒHello, WorldÓ 

4. SYSTEM DESCRIPTION 

4.1. Preprocessing 

Figure 10 below provides an overview of the system. The first 
step in processing speech sound was reducing the input into a 
form that emphasized the most important information and 
excluded irrelevant details.  The quality of the analytic output, 
even the ability to generate meaningful output at all, depended 
on the quality of work done at this stage.  This meant 
downsampling and filtering to improve the performance 
(particularly on the constrained platform of an iPad or iPhone), 
followed by extracting a set of audio features commonly used 
for representing speech [30, 31], including the Mel Frequency 
Cepstral Coefficients (MFCCs), pitch, normalized amplitude 
values, other spectral features, and the relative content of noise 
in the signal as determined by the ratio of harmonic to 
inharmonic frequencies in the sound.  We also considered 
formant extraction, but deferred including formants in this 
version of the implementation for performance considerations 
and because the increase in accuracy of phoneme class 
detection was not large enough to justify the cost of the 
additional processing at this time.  

 
Figure 10: System Overview 

We experimented with various sampling rates and found 
that sampling at (or downsampling to) 16KHz produced the 
best combination of performance and visualization quality.  In 
general, higher sampling rates provided more information, and 
higher quality visualizations, but lower sampling rates provided 
better performance.  Unless someone has a trained ear and is 
listening and comparing, hearing the difference in the sound for 
the different sampling rates is difficult.  The impact on analytics 
was also minimal; downsampling did not introduce errors 
except for the occasional omission of short, softly-uttered 
phonemes.  The largest impact of downsampling was the 
decrease of nuanced data available for visualization. 

Additionally, processing real-time, streaming audio 
required framing, with a carefully-selected frame size and 
advance rate and overlap between signal slices.  All signals 
analyzed in this paper used 1-second frames with a 250 msec 
frame advance. This meant that each 250 msec unit of sound 
would present itself to the system in different positions of 4 
different frames, effectively taking a snapshot of the latest 1-
second of audio every 250 msec.  The 1-second frame size gave 
us optimal performance.  Smaller frame sizes presented 
difficulty detecting longer vocal gestures, and larger frame sizes 
tended to overlook short sound gestures and nuance (small 
details got ÒlostÓ in the larger analytic scale).  The advance rate 
was also carefully selected for optimal performance.  Smaller 
overlap introduced misclassification errors.   

4.2. Analysis and Classification 

Two commonly-used machine learning models were 
included in this implementation:  a simple Gaussian classifier, 
and a Hidden Markov Model (HMM) [32, 33].  We used these 
models to detect phoneme classes and voicing quality.  Training 
data for the system included 10-20 samples of each sound, 
collected at 44.1KHz, from adult men and women primarily 
with Midwestern dialects. One adult man, however, was from 
the west-coast region of the United States and had virtually 
unaccented speech.  One notable difference in speech between 
the Midwestern speakers and the west-coast speaker was the 
pronunciation of ÔtÕ in the inner syllables of words.  
Midwesterners typically pronounce this sound like soft ÔdÕ 
(called a ÔtapÕ by speech and language pathologists), while the 
west-coast speaker used the same stopped ÔtÕ sound that they 
did in the beginnings and ends of words.  Another difference 
was that the Midwestern speakers gave a stronger diphthong 
(blended vowel) character to long vowels.  No childrenÕs voices 
were used to train the system, because of the unavailability of 
suitable corpus. The system classified childrenÕs voices almost 
as well as adult voices, however. 

We trained the system to recognize phonemes by class. All 
vowels are formed by raising and lowering the tongue in the 
mouth (close/mid/open), and by directing the focus of the sound 
forward or backward (front/central/back). Figure 9 shows the 
monophthong vowels and their placement.  Notice that some 
variation occurs with regional dialect. 
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Figure 9: Monophthong Vowels 

Diphthong vowels are blended, two-part sounds where the 
first sound ÒmorphsÓ into the second.  We detect the diphthong 
vowels heard in the words Òcane,Ó Òcoy,Ó Òcoat,Ó Òcore,Ó Òkite,Ó 
and ÒcowÓ. 

Individual consonants are much more difficult to 
distinguish, but for the purposes of this work, recognizing the 
following English consonant classes is sufficient: 

¥ Stops: /p/ pan, /b/ ball, /t/ tan, /d/ Dan, /k/ can, /g/ gas  
¥ Fricatives: /h/ hat, /f/ fat, /v/ vat, /s/ sat, /z/ zap, /sh/ 

shack, /zh/ luge  

¥ Nasals: /m/ mat, /n/ gnat, /ng/ sing  
¥ Liquids: /l/ lamp, /r/ rat  
¥ Glides: /w/ wing, /j/ yes, /kw/ quick, /ks/ box  

¥ Affricates: /ch/ chip, /nch/ bench, /j/ jello  
The phoneme detection analysis in this paper is based on 

training over recordings of 22 classes of isolated phonemes, 
outside the context of real speech.  This approach worked better 
than using in-context phonemes (phonemes isolated from words 
in real speech) for training, probably because of the transitional 
qualities between phonemes.  In real speech, a phoneme 
typically begins sounding before its predecessor ends.  
Furthermore, real speech has prosodic cues embedded in the 
utterances that are unrelated to a phoneme itself.  The system 
recognized phoneme classes accurately over 70% of the time at 
this level of granularity, and some of the phonemes were 
consistently recognized over 95% of the time. At the end of this 
processing pipeline, the most common errors were ÒdroppedÓ 
sounds, usually sounds uttered too quickly and softly to be 
detected accurately. 
 

5. FUTURE WORK 

We have demonstrated an analysis and visualization of the 
human voice that highlights the expressive vocal and relational 
channels.  These visualizations can be used many ways, 
including applications for speech therapy, as a tool to help 
screen for autism, a tool to highlight the expressive content in a 
speakerÕs voice, and a means to make the ephemeral, qualitative 
voice persistent.   We have just begun to explore the 
visualization possibilities.  A possible next step is creating a 
suite of visualizations to address an expanded set of qualitative 
elements of speech.  It would be useful to present these at 
different levels of detail, and include some visualizations that 
summarize vocal qualities.  These could be released as a 
package and made available to iPad/iPhone developers.  We 
might also improve the resolution of downsampled 

visualizations, and we are actively exploring options toward 
this end.   

A companion to the visualization package could be an 
extended package for voice and sound analysis on iOS.  Many 
other analysis techniques and representative features are 
possible, and a toolkit could enable the development of new 
applications.  It would be enlightening to focus on enabling the 
creation of new media for artists, who could help us expand the 
visual repertoire. 

The scope could also be expanded to include multimodal 
analysis and visualization.  For example, we could process 
video with sound, or sensor data with sound.  We could also 
incorporate the vocal semantic channel into our work. 

We did not address the need for working specifically with 
childrenÕs voices.  This need should be addressed by collecting 
speech samples (for training and testing) from children, and 
extending the analytics appropriately so that they will process 
childrenÕs voices efficiently. 

We also did not address the mobility that iPhones and iPads 
provide.  We could support dyadic and multi-way conversation 
across devices, do analysis on a server apart from the device, 
and display the results on yet another device (such as a public 
display wall). 

Finally, soliciting feedback would help prioritize the next 
steps.  Informally, feedback has been good. Users liked the 
visualizations, and enjoyed experimenting with their voices. 
Some liked the color selections, and many thought that the high 
resolution visuals were beautiful. A user study across the suite 
of possible visualizations would help focus new development  

6. CONCLUSION 

In this paper we showed that it is useful to visualize the 
expressive and relational parts of spoken communication, and 
that both of these channels can be addressed in the same 
application.  We also demonstrated that these analytic and 
visualization techniques could enable a range of applications, 
such as 1) speech therapy tools, 2) the quantization and 
visualization of voice characteristics for typical speakers, and 
for speakers with medical conditions such as ASD, 3) the 
characterization and visualization of communication patterns 
found within different relationships and cultures, and 4) the 
creation of new kinds of multimodal creative works.  And, we 
demonstrated that itÕs possible to do this in a constrained, 
mobile environment.  This paperÕs contributions are 1) the 
development of a simple toolkit for vocal analysis on a mobile 
platform (iPad/iPhone), and 2) development of visualizations 
representing the expressive and relational elements of spoken 
communications, and 3) the enabling of possible new 
applications described above.  We envision a path forward that 
will expand the capabilities of the analytics and visualizations, 
and believe that the research trajectory will extend into 
multimodal analysis and visualization.  The challenge will be 
enabling a new level of literacy, while discouraging a new level 
of complexity. 
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