
Algorithms and Data Structures

5. Computer Memory

Łódź 2012

Bits and Bytes

2 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

Computer memory can be categorized according to access speed and size

Computer Memory

- Computer memory can be thought of as a series of electronic on/off switches.
Each on/off switch is called a bit. A group of 8 bits is called a byte (B).
- Bits are interpreted as numbers by thinking of „off” as 0
and „on” as 1, for example:

Type
Access
speed

Proximity
to CPU

Size Volatile

Register Fastest Inside 10’s Y

Caches Very fast Adjacent MB Y

RAM Fast Near GB Y

Hard disk Slow Far TB N

off on on off on off off off

0 1 1 0 1 0 0 0

Decimal and Binary Numbers

3 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

The numbers that we most often use every day are decimal or base ten.

Computer Memory

>>> bin(11)

>>> int(0b1011)

>>> bin(2174) #Very long string!

2 1 7 4

1000’s 100’s 10’s 1’s

103 102 101 100

= 2*1000 + 1*100 + 7*10 + 4*1

Binary or base two numbers use powers of two instead the powers of ten.

1 0 1 1

8’s 4’s 2’s 1’s

23 22 21 20

= 1*8 + 0*4 + 1*2 + 1*1 = 11

Hexadecimal Numbers

4 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

- Hexadecimal numbers are base sixteen; they use powers of 16 and the
following digits:

Computer Memory

- Unsigned integers are stored in memory as binary numbers explained above.

- Signed integers are usually stored using two’s complement representation
whose details goes beyond this course.

0 1 2 3 4 5 6 7 8 9 A B C D E F

- Every four bits can be thought of as a single hexadecimal „digit”, since 4 bits
can hold values between 0 an 15.

>>> hex(15)

>>> hex(255)

>>> hex(2**32)

>>> hex(-1024)

Memory Sizes

5 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

- Memory sizes are given in terms of bytes, with a prefix to indicate the scale.
Common prefixes are borrowed from the metric system:

Computer Memory

- Because computer memory is organized
in bits, powers of 2 are used to specify the
memory size.

- These are close to metric equivalents but
are not exactly the same.

Prefix Value

kilo- 103 = 1000 = 1 thousand

mega- 106 = 1,000,000 = 1 million

giga- 106 = 1,000,000,000 = 1 billion

tera- 109 = 1,000,000,000,000 = 1 trillion

Prefix Value

kilo- 210 = 1024

mega- 220 = 1,048,576

giga- 230 = 1,073,741,824

tera- 240 = 1,099,511,627,776

Floats

6 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

Predict what this code will do when it runs:

>>> x = 0

>>> while x != 1:

>>> print (x)

>>> x += 0.1

Then run it. Are you surprised? Is 0.1 the same as 1/10?

>>> x = 0.1

>>> print x

>>> print „%.32f” % (x)

Computers use base two representation and 0.1 has an infinitely repeated
binary pattern, 1/10 = 0.0001100110011…

Similarly, 1/3 can not be stored exactly in a base ten system, 1/3 = 0.333333…

Computer Memory

Floats

7 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

Fractional values are converted to binary the same way as integers, except they
use negative powers of 2, e.g.

 = 1*1/2 + 0 *1/4 + 1*1/8 + 1*1/16 = 11/16

Unlike 1/16, the number 1/10 can not be expressed as a finite sum of negative
powers of 2: 1/10 = 0.0001100110011…

Thus 1/10 can not be stored exactly as a floating point value in a binary
computer.

Conclusion: Use inequalities with floats.

Because so many floating point values can not be stored exactly in memory,
testing floats using either == or != is risky. Use inequalities (<, <=, >, >=)
whenever possible.

Computer Memory

1 0 1 1

2-1 2-2 2-3 2-4

0.

Exercises

8 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

Computer Memory

5.1. How to multiply a binary number by 2 without using any addition or
multiplication? Multiply by 8? Divide by 2?

5.2. Give the largest binary value that can be stored in one unsigned byte along
with its decimal and hexadecimal equivalents.

5.3. Give the largest binary value that can be stored in two unsigned byte along
with its decimal and hexadecimal equivalents.

5.4. Determine the largest unsigned integer that can be stored in a 32-bit
machine.

5.5. Determine the largest unsigned integer that can be stored in a 64-bit
machine.

Exercises

9 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

Computer Memory

5.6. Write a short program binhex.py that prints a table of binary and
hexadecimal values for the decimal integers 1 through 36. Hint: Use %ns,
where n is the number of digits, for formatting the printed numbers.

5.7. Convert the following decimal values to binary. Indicate which can or
cannot be stored precisely as floats.
a) 0.25, b) 0.375, c) 5.125, d) 10.4375, e) 0.3, f) 0.5

5.8. Convert the following binary values to decimal
a) 0.1, b) 0.0101, c) 0.111, d) 10100.01, e) 111.1011, f) 1000.10001

5.9. Fix the while loop code at slide 6 so that it terminates as apparently
intended.

Summary

10 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

Computer Memory

1) Binary numbers are base two and work the same as decimal numbers
except that they use powers of 2 instead of powers of 10.

2) Hexadecimal numbers are base 16. They provide shorter number
representation – each 4 bits are replaced by a single symbol {0-9,A-F}.

3) If memory size is specified using powers of two, the indexes kilo-, mega-
giga-, tera- and so on give different numbers than in the case of decimal
specification.

4) Computers use base two representation of fractions, so many floating
point numbers, such as 1/100, 10.5 are stored with errors.

5) Operations == and != should not be used with floating point variables;
instead, inequalities are apropriate for floats.

Literature

11 A Materka & M Kociński, Algorithms & Data Structures, TUL IFE, Łódź 2012

Computer Memory

Brian Heinold, Introduction to Programming Using Python, Mount St. Mary’s
University, 2012 (http://faculty.msmary.edu/heinold/python.html).

Brad Dayley, Python Phrasebook: Essential Code and Commands, SAMS
Publishing, 2007 (dostępne też tłumaczenie: B. Dayley, Python. Rozmówki,
Helion, 2007).

Mark J. Johnson, A Concise Introduction to Programming in Python, CRC Press,
2012.

http://faculty.msmary.edu/heinold/python.html

