

Politechnika Łódzka Instytut Elektroniki

SIGNAL PROCESSING

Laboratory #4:

Plotting signals in Python (time scale and amplitude resolution)

M. Kociński, P. Strumiłło

Medical Electronics Division Institute of Electronics

PURPOSE:

Plotting signals in Python

TASKS:

- 1. Plotting sampled sinusoidal signals in a correct time scale:
 - a. Write a script defining N=2000 samples of a harmonic signal $x(t)=Asin(2\pi f_x t)$, where $A=10, f_{x1}=10$ Hz, sampled at a rate of $f_s=1000$ Hz. Plot this signal in an interpolated and sampled version using the plot command (see: plot?)
 - b. On a single figure, plot the sum of three sinusoids of equal amplitudes A=10 and the following frequencies: $f_{x1}=10$ Hz, $f_{x2}=20$ Hz, $f_{x3}=25$ Hz sampled at a rate of $f_s=1000$ Hz. Plot first N=2000 samples of the sum of the defined sinusoids.
- 2. Load ecg_mit.mat signal available from link: <u>hwww.eletel.p.lodz.pl/pstrumil/sig_proc/signals.rar</u>
 - a. Plot first *N*=2000 samples of this ECG signal in a correct time (in seconds) and amplitude (in mV) scale, given the sampling rate is fs=360 Hz and an 11-bit analog to digital (A/D) converter was applied to sample and code the ECG signal recorded in the voltage range of -5mV ÷ +5mV.
- 3. Write a function quantize_ecg(vec, b) that will simulate a lower number of bits of the A/D converter. The vec parameter is the vector containing the source 11-bit ECG signal and b is the parameter indicating by how many bits we decrease the resolution of an 11-bit ECG signal, e.g. if b=2 the function should return an ECG signal coded with 9 bits (i.e.11-b=9)

 $\Box 10/27/2012$