
Image Processing and Computer
Graphics

Part 1

Adam Sankowski, Marek Kociński

2012

Introduction to Python

• Run PyLab from Enthought folder in start menu

• On MacOS type ipython --pylab in the Terminal

• Type ? to read brief introduction to this environment

2

Introduction to Python

• Typing object? or ?object will print information about object

• Double ? Will display more information

• There is also full python help. Just type help(object)

• Pressing TAB during typing will display any available methods
or variable names

• History of commands is available by pressing Ctrl + p to print
previous command or Ctrl + n to print next

• Type whos to print all variables you created

• Type reset to clear all variables, functions and imports

3

Introduction to Python

• Type in command to print out simple string and press Enter:

 print ”Hello, World”

• You can also use python shell like calculator, just type in:

 2+2 18/3 18/7

• You need to force float type to get correct answer:

 18.0/7 18/7. 18./7.

• To raise to the power any numbers simply type:

 2**2 3**3 8**3 -3**15

4

Variables
• To set a variable integer and float
 x = 18 y = 12.0 or y=12.
• To check a variable’s type

 type (x) type(y)
• An arbitrary long integer

 a = 12345678901234567890 type(a)
• Now you can type:
 x + y
• To get variable value from user type:
 a = input(„Enter number: „)
• After typing value you can use it:
 a**4 b= a + 20
• Remove ‘a’ from namespace:

del a

5

Functions and Modules

• Python has many functions. Type:

 pow? abs? floor? sqrt? max? round?

• Use those functions

• Type in help(math). It will print all functions from that module

• Find used functions and look for more

• Functions from modules can also be used like:

 math.floor(12.4) math.sqrt(9)

• Casting

 int(2.718281828) float(2) 1+2.0

6

Scripts

• Instead of typing every command you can create and save
script with extension “.py”

• First go to folder where you want to save program using:

 ls cd .. cd folder/folder cd c:/

• To create new program type:

 edit program_name.py

• By default program is open with notepad

• To try out program type:

 print „My first program”

• Program will execute when you save and close notepad

7

Scripts

• If you want to run script form command line type:

 run program_name.py

• raw_input() is used to get string variable from the user. Type
in your program:

 x = raw_input(„Enter name : „)

 print „Hey „ + x

• This code will get string value form user as string variable x
and print on screen two combined strings

8

Strings

• Go back to command line

• Strings can be written in two ways:

 „Hey” ,Hey’

• Both ways has same effect, but when you use single quotation
in string like:

 ‘He’s a student’

• String will be seen as ‘He’ and rest will return an error. That’s
why in this case we will use double quotation:

 „He’s a student”

9

Strings

• Another way is to use backslash before single quotation to say
python compiler to treat next character as part of a string:

 ‘He\’s a student’

• Backslash works the same way with double quot. Try:

 „He said \”Hey\” to me”

• There is simple method to combine two strings. Try:

 a = „Image „

 b = „Processing”

 print a + b

10

Strings

• When you need to print string combined with number
variable like:

 num = 42

• You can’t just type:

 print „My mom is „ + num

• Because string and integer cannot be concatenated. We can
create another variable:

 str_num = str(num)

 print „My mom is” + str_num

• Another way is to put integer in signs above TAB key:

 print „My mom is „ + `num`

11

Strings

• String can also have blank spots where some string values can
be inserted:

 welcome = ‘Hello %s, have a nice day’

• %s means that it will be replaced with some string. There are
two ways of doing it:

 name = ‘John’

 print welcome %name

Or

 print welcome %’John’

 print ‘Hello %s, have a nice day’ %name

12

List

• Lists are structures witch store data. List can have multiple
elements. Lets try to create list of strings:

 family = [‘mom’, ’dad’, ’bro’, ’sis’, dog’]

• Once you created a list, all elements in it are numbered.
Numeration starts from 0. Now you can use elements from list
by typing their number:

 family [2] family[4]

13

List

 If your list is long you can refer to its elements from end to
beginning. Last element is numbered as -1, second last as -2
etc.

 family = [‘mom’, ’dad’, ’bro’, ’sis’, dog’]

 [0] [1] [2] [3] [4]

 [-5] [-4] [-3] [-2] [-1]

• String also can be a sequence, and numeration is the same,
for example:

 ‘graphics’[3] ‘graphics’[-5]

• Will return ‘p’.

14

List

• List also is capable of storing different types of values:
integers, floats, strings and even other lists. For example:

 list = [‘car’, 4, 3.5, [3, 2,1, ’Go!’]]

• Now look into your list and check if list is correct:

 print mylist or mylist or mylist[:]

• And try to call few elements of list:

 list[2]

 list[3]

 list[3][3]

15

Slicing

• Slicing is extracting part of the list. To show how its done, let’s
create example list:

 example = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• Now we can view just a part of that list using command:

 example [x:y]

• Where x is first position of the list we want to view and y is
position before which we want to end. For example:

 example [4:8]

• Will return:

 [4, 5, 6, 7]

16

Slicing

• When you leave x or y empty then it will show all elements to
the end or to the beginning. Try:

 example[4:] example [:7] example[-5:] example[:]

• There is also third optional parameter of slicing. It show how
much you want to increment slicing. For example:

 example [1:8:2] example[10:0:-2]

 (or example[10::-2] example[::-1])

• Try few different combinations. You can also leave some
parameters empty

• Does the list contain x?

 45 in example 45 not in example

17

Lists functions

• There are functions to manage lists:

 len(example) returns length of list

 max(example) returns biggest element of list

 min(example) returns smallest element of list

• After typing every code below view list (example[:]) for
changes and try your own

 del example[3] deletes third element of list

 example [2] = 12 replace element value in list type:

 example [4:4] = [5, 6] put two elements after forth

 example [2:4] = [] delete elements second and third

 18

List Methods

• Many structures have additional options called methods.
Methods are used after dot. Lets make some list for example:

 list = [23, 3, 12, 45, 76, 3, 7]

• These are example methods:

 list.append[45] add 45 at the end of list

 list.count[3] count how many 3 are in list

 list.sort()

 list.extend(example) add example list at the end

• View list[:] to see result

List.append(example) add example list at the end

• View list[:] to see result

19

Methods

• Type help(list) to find more methods. Look and try methods:

 index

 insert

 pop

 replace

 remove

 reverse

 sort

 find

 lower (you need to create string list to test it)

20

Tuple

• Tuple is constant list. It means that tuple once created cannot
be changed. It’s used when we don’t want to accidently
change some element in structure. Tuple doesn’t have
methods like pop, remove, reverse. All you can do with tuple
is get elements from it. Tuple is created similar to list, but
instead of [] we use ():

 tuple = (4, 7, 23, 87, 24) or simple tuple = 4, 7, 23, 87, 24

 str_tuple = (‘cat’, ’dog’, ’mouse’)

• Now all you can do with it is to call elements:

 tuple[2] str_tuple[1]

21

Dictionary

• Dictionary is another structure. That structure has couples of
elements called keys and values. What this means is that
instead of index like in lists or tuples, you can use strings or
integer to find values. For example:

 dict _ages= {‘Dad’:47,’Mom’:45,’Bro’:19}

 dict _ages1= {47:‘Dad’,’45:’Mom’,19:’Bro’}

• Keys are strings named as members of family and values are
integers representing age. To find age of mom type:

 dict_ages[‘Mom’] dict_ages1[45]

• Type help(dict_ages) and try out dictionary methods like:

 copy has_key clear get update

22

Working with files

• To use a file you need to create an object. Object must be
equal to open functions. This function takes two parameters:
path to your file and what can you do with it (read or write)

 fObj = open (‘c:/your_path/a.txt’, ’w’)

• This line will also create that file if there was no such file in
that path. We called that file with attribute ‘w’ so we can
write some text in it:

 fObj = write(‘Hello I\’m just a text in a file’)

• To save changes in that file you need to close it:

 fObj = close()

• Now check your file for changes

23

Working with files

• Now open your file so you can read it:

 fObj = open (‘c:/your_path/a.txt’, ’r’)

• To read from file we will use function read(). This function can
take as a parameter number of bytes you want to read :

 fObj.read(5)

• It should print ‘Hello’. Using function without parameter will
read file to the end:

 fObj.read()

• This should print ‘ I’m just text in a file’

24

Working with files

• You can also read file line by line (first you need to write few
lines in your file) using readline() function, or read all lines
using readlines() function

• If you want to write lines of text into file use \n in your string
to end current line.

• Type help(fObj) to view other file functions, and try them as
well

25

If statement

• Create new script or edit existing

• If statement can have block of instructions performed only
when statement is true:

 fish = tuna

 if fish == tuna:

 print „This fish is tuna”

• Single equal sign assign value to variable. Double equals are
used to compare. If variable fish has value tuna then print out
string „This fish is tuna”. Execute program. Now change in
your code value of fish to something else and try again.

26

Elif and else

• Thanks to elif (else if) if statement can have few cases, and if
none of cases is correct, then we can use else.

 fish = tuna

 if fish == tuna:

 print „This fish is tuna”

 elif fish == sardine:

 print „This is sardine”

 else:

 print „I don’t know what that is”

• Change fish value to test all statements. You can also nest
more statements inside existing ones.

27

Statements

• Statements can be something more than just a comparison
(==). You can also use : >, <, >=, <=,!=. There is also possibility
to use logical functions like and, or :

 number = 5

 if number >= 3 and number <= 8:

 print „This number is between 3 and 8”

28

While

• While loop repeats a block of code until statement becomes
false. This is a simple counting to 10 example:

 b = 1

 while b <=10:

 print b

 b+=1

• While will execute ten times and print values from 1 to 10.
b+=1 is a shortcut from b = b+1 which is incrementing variable
b by 1.

29

Break

• In some cases we want to have infinite loop until some event
happens. This is an example of how break works:

 while 1:

 text= raw_input(‘Type \’quit\’ to exit’)

 if text==‘quit’:

 break

• This loop will repeat itself until user type in proper string.
while 1: creates infinite loop.

30

For

• For loops through the objects like lists or tuples. Starts with
first element and ends after last one, for example:

 grocery = [‘bread’, ’butter’, ’milk’, ’cheese’]

 for food in grocery:

 print ‘I want ’ + food

• First we created grocery list of strings. Next variable food is
created and it is taking values from grocery list.

31

For

• Let’s try another example of for loop. This time with numbers:

 for item in range (6):

 print item

• This loop will print numbers from 0 to 5.

• You can also treat string as a list and type:

 for item in ‘abcde’

 print item

• Loop will take letters from string like elements from list, and
print letters from a to e

32

Functions

• To create simple function you need to type a name and
arguments taken by your function. After that type in a code:

 def plusten (x):

 return x + 10

• This function adds 10 to a number. You can also set default
parameter if user don’t type any:

 def plusten (x = 0):

 return x + 10

• Calling function like: plusten() will return 10

33

Tuple parameters

• When you need to build a function but you don’t know how
many parameters will be needed, then set tuple as parameter,
for example:

 def food_list (*food):

 print food

• Star before parameter means that this parameter will be a
tuple and it will take every number of parameters. Try to use
this function couple times with different number of string
parameters:

 food_list (‘apples’) food_list(‘bananas’, ’peaches’)

34

Dictionary parameters

• Another type of parameter of your function is dictionary:

 def food_list (**items):

 print items

• Double star means that dictionary will be a parameter in this
function. To use this function you need to type some
dictionary as parameter, for example:

 food_list (apples=4, bananas=2, peaches=6)

• Function will print out whole dictionary

35

Mixed parameters

• Every parameter type can be added next to another. To prove
that let’s try:

 def shopping(shop_name, *busses, **foodlist):

 print ‘Go to :‘

 print shop_name

 print ‘Use those bus lines :’

 print busses

 print ‘Buy :’

 print foodlist

• Now enter

 shopping (‘biedronka’, 12, 23, 34, bacon=3, eggs=10)

36

Classes and objects

• Previously we used methods from lists, tuples and
dictionaries. Now we will learn how to create methods.
Methods are the same thing as functions but they are inside
of classes. Class is a part of code containing variables and
methods, which can be used by many objects you will create.
First let’s create a simple class:

 class myClass:

 def createName(self,name):

 self.name = name

 def printName(self)

 return print self.name

37

Classes and objects

• We created class called myClass. This class contains two
methods. Those methods are similar to functions, but you
have to remember to add one extra parameter called self.
This is a temporary placeholder for objects we will create
now:

 first = myClass()

 second = myClass()

• Now when we use methods from myClass in those two
objects, self will become first for first object, and second for
second object

38

Classes and objects

• Type in:

 first.createName(‘Adam’)

 second.createName(‘Grzegorz’)

• Objects first and second used method createName from class
myClass. Now use second method from myClass:

 first.printName()

 second.printName()

• As you can see single class can be used separately by different
objects and hold individual values.

39

__init__

• Classes can also have methods which are executed
immediately after creating object corresponding to that class.
If you want to put that kind of method into your class you
have to name it __init__(underscore, underscore, init,
uderscore, underscore)

 class someClass:

 def __init__(self):

 print „This is __init__ method”

• Now create new object and watch what happens:

 newObj=someClass()

CVHI2009 40

Parent and child classes

• Classes can inherit variables and methods from other classes.
It’s useful when you want to use variables from other class in
new one, but you don’t want to type again whole structure
form other class. Let’s write an example:

 class Dad:

 var1=‘Hey I\’m dad’

 class Mom:

 var2=‘Hey I\’m mom’

 var3=‘I want you to clean your room son’

• Those two classes will be parent classes with variables

41

Parent and child classes

• Now we will create child class which will inherit variables from
both parent classes:

 class Child(Mom, Dad):

 var4=‘I’m a child’

 var3=‘My room is clean’

• To take variables from single or multiple parent classes simply
type them one after another in class definition. Now let’s
create child object:

 childObject = Child()

42

Parent and child classes

• Print all child object variables:

 childObject.var1

 childObject.var2

 childObject.var3

 childObject.var4

• As you can see variables var1 and var2 has the same values as
in parent classes, but var3 has changed value because we
overwritten it in chlidClass

43

