
Medical Electronics - Laboratory 1

Part 1

Aim: implement the simplest task with Arduino Uno board: blink on-board LED.

Hardware Required

 Arduino Uno Board

Circuit

This example uses the built-in LED that most Arduino boards have. This LED is

connected to a digital pin D13 in Arduino Uno. The constant LED_BUILTIN is specified

in every board descriptor file and allows you to control the built-in LED easily.

Code

Plug your Arduino board into your computer, start the Arduino Software (IDE) and
enter the code below.

 The first thing you do is to initialize LED_BUILTIN pin as an output pin with the line

pinMode(LED_BUILTIN, OUTPUT);

In the main loop, you turn the LED on with the line:

digitalWrite(LED_BUILTIN, HIGH);

This supplies 5 volts to the LED anode. That creates a voltage difference across the
pins of the LED, and lights it up. Then you turn it off with the line:

digitalWrite(LED_BUILTIN, LOW);

That takes the LED_BUILTIN pin back to 0 volts, and turns the LED off. In between the
on and the off, you want enough time for a person to see the change, so
the delay() commands tell the board to do nothing for 1000 milliseconds, or one
second. When you use the delay() command, nothing else happens for that amount of
time.

/*

 Blink

 Turns an LED on for one second, then off for one second, repeatedly.

 Most Arduinos have an on-board LED you can control. On the UNO, MEGA and ZERO

 it is attached to digital pin 13, on MKR1000 on pin 6. LED_BUILTIN is set to

 the correct LED pin independent of which board is used.

 If you want to know what pin the on-board LED is connected to on your Arduino

 model, check the Technical Specs of your board at:

 https://www.arduino.cc/en/Main/Products

 modified 8 May 2014

 by Scott Fitzgerald

 modified 2 Sep 2016

 by Arturo Guadalupi

 modified 8 Sep 2016

 by Colby Newman

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Blink

*/

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Part 2

Aim: build a circuit with external LED and resistor and blink the LED.

Hardware Required

 Arduino Uno Board

 LED

 220 ohm resistor

 hook-up wires

 breadboard

Circuit

If you want to lit an external LED, you need to build the circuit from Figure 1, where
you connect one end of the resistor to the digital pin correspondent to
the LED_BUILTIN constant. Connect the long leg of the LED (the positive leg, called
the anode) to the other end of the resistor. Connect the short leg of the LED (the
negative leg, called the cathode) to the GND. The value of the resistor in series with
the LED may be of a different value than 220 ohm; the LED will lit up also with values
up to 1K ohm.

Schematic

Figure 1 External LED and resistor circuit

Figure 2 External LED and resistor circuit

Code

After you build the circuit plug your Arduino board to the computer and run the code
from Part 1 of the exercise. Modify the delay values and test various blinking
frequencies.

https://www.arduino.cc/en/uploads/Tutorial/ExampleCircuit_sch.png

Part 3

Aim: build a circuit with external LED and a button to turn on and off LED.

Hardware

 Arduino Uno Board

 Momentary button or Switch

 10K ohm resistor

 220 ohm resistor

 LED

 hook-up wires

 breadboard

Circuit

Connect three wires to the board according to Figure 3. The first two, red and black,
connect to the two long vertical rows on the side of the breadboard to provide access
to the 5 volt supply and ground. The third wire goes from digital pin 2 to one leg of
the pushbutton. That same leg of the button connects through a pull-down resistor
(here 10K ohm) to ground. The other leg of the button connects to the 5 volt supply.

When the pushbutton is open (unpressed) there is no connection between the two
legs of the pushbutton, so the pin is connected to ground (through the pull-down
resistor) and we read a LOW. When the button is closed (pressed), it makes a
connection between its two legs, connecting the pin to 5 volts, so that we read a
HIGH.

You can also wire this circuit the opposite way, with a pullup resistor keeping the
input HIGH, and going LOW when the button is pressed. If so, the behavior of the
sketch will be reversed, with the LED normally on and turning off when you press the
button.

If you disconnect the digital I/O pin from everything, the LED may blink erratically.

This is because the input is "floating" - that is, it will randomly return either HIGH or

LOW. That's why you need a pull-up or pull-down resistor in the circuit.

Schematic

Figure 3 External LED and button circuit

Figure 4 External LED and button circuit

Code

/*

 Button

 Turns on and off a light emitting diode(LED) connected to digital pin 13,

 when pressing a pushbutton attached to pin 2.

 created 2005

 by DojoDave <http://www.0j0.org>

 modified 30 Aug 2011

 by Tom Igoe

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Button

*/

// constants won't change. They're used here to set pin numbers:

const int buttonPin = 2; // the number of the pushbutton pin

const int ledPin = 13; // the number of the LED pin

// variables will change:

int buttonState = 0; // variable for reading the pushbutton status

void setup() {

 // initialize the LED pin as an output:

 pinMode(ledPin, OUTPUT);

 // initialize the pushbutton pin as an input:

 pinMode(buttonPin, INPUT);

}

void loop() {

 // read the state of the pushbutton value:

 buttonState = digitalRead(buttonPin);

 // check if the pushbutton is pressed. If it is, the buttonState is HIGH:

 if (buttonState == HIGH) {

 // turn LED on:

 digitalWrite(ledPin, HIGH);

 } else {

 // turn LED off:

 digitalWrite(ledPin, LOW);

 }

}

