
qmazda manual
Piotr M. Szczypiński

2020-12-02

Introduction

Qmazda is a software package for digital image analysis. It computes shape, color and texture
attributes of arbitrary regions of interest. Also, it implements algorithms of discriminant analysis
and machine learning. MaZda, which was the previous version of the texture analysis software, has
been developed since 1996. The first algorithm implemented in this software derived attributes from
the gray-level co-occurrence matrix (Macierz Zdarzeń in Polish). The name MaZda is thus an
acronym of Macierz Zdarzeń and has no connotation with the Japanese car make. The qmazda
project is to further develop MaZda program, make it an open source and port the implemented
algorithms previously available for Windows systems also to Linux and OS X platforms.

Qmazda package consists of four programs, which have graphical user interfaces. These are MaZda,
MzGengui, MzReport and MzMaps. These programs together create an image analysis workflow.
The MaZda module enables to define regions of interest in the image and to make choice which
image attributes are going to be extracted from the image. The second module, MzGengui,
computes color, texture and morphological attributes. The resulting data may be represented as
feature vectors (each vector characterizing individual region of interest) or by feature maps (images,
which gray-levels represent local values of the attributes). The results of computation are then
submitted to the MzReport or to the MzMaps module. MzReport presents the vectors of computed
attributes in a spreadsheet and enable visualization of their distributions. Moreover, it enables
discriminant analysis, selection of most discriminative attributes, machine learning and tests of data
classification. MzMaps shows the feature maps and enables image segmentation based on color and
texture attributes.

Qmazda also includes three console applications. These programs are MzGenerator, MzTrainer and
MzPredict. The function of MzGenerator reflects functionality of the MzGengui, and thus it
computes region-based feature attributes and feature maps. The input list of attributes to be
computed, input image and regions of interest are specified through the command line arguments.
MzTrainer covers selected functions of the MzReport, among others they are procedures for
selection of the most discriminating attributes and machine learning. The result of the MzTrainer is
a file with classification rules. The third application, MzPredict, enables data classification or image
segmentation based on the rules produced by the MzTrainer or MzReport.

The following diagrams present workflows for image analysis, machine learning and classification
paths by means of the programs with a graphical user interfaces and by their console counterparts.

Workflow available with interactive applications: image processing, data extraction, machine
learning, data classification and texture-based image segmentation

Workflows available with console applications: data extraction, machine learning, data
classification and texture-based image segmentation

MaZda

MaZda module enables loading and visualization of 2D and 3D images. The loaded images are
always presented in grey-scale. Color images are converted to monochrome (grey-scale) images and
then displayed. Color overlays are used in MaZda to indicate regions of interest. Such the regions
are used to limit further analysis to the selected image fragment. MaZda enables defining (drawing)
regions of arbitrary size and shape.

Working with the MaZda module consists in loading the image, defining regions (or volumes) of
interest for the following analysis, compiling a list of features to be extracted, and execution of the
analysis. Working with the MaZda module consists in loading the image, defining regions (or
volumes) of interest for the following analysis, compiling a list of features to be extracted, and
execution of the analysis.

MaZda window layout

 À main menu

 Á load, save and analysis tools

 Â region drawing tools

 Ã dimensionality switches

 Ä region of interest panel

 Å image viewing options panel

 Æ image rendering area

 Ç status bar with a zoom slider

Loading and saving

To load an image select File > Load image... option from the menu or press the load image
button. Then, use the dialog to select an image file to load. Optionally image file can be dragged-
and-dropped to the image rendering area. MaZda automatically recognizes image format and
dimensionality, and appropriately sets initial visualization modes. Note that MaZda enables loading
3D images from stacks of files. To do this select a list of appropriate files in the image loading
dialog or drag-and-drop a list of files. To save the loaded image in another format select
File > Save image... from the menu.

To load regions previously created in MaZda select File > Load regions... option from the menu or
press the load regions button. Optionally regions' file can be dragged-and-dropped onto the
regions of interest list area. To save the regions select File > Save regions... from the menu.

Image viewing options
Image view options docking window enables switching
the view modes. The upper part shows the image
histogram with two sliders and two spin boxes to set
gray-scale range.

The eye buttons enable selection of visualization
modes. The eye button enables visualization in gray-
scale range. The three-level mode is used to choose
grey-level thresholds. The grayed eye hides an
image to enable exclusive visualization of overlays.
The two cube buttons enable volumetric rendering of
3D images of white and black objects. The
combo (list) box enables selection of color-to-
monochrome conversion. The color selection button
invokes dialog to define background color for image
rendering.

The bottom part consists of three groups of check
boxes, sliders and spin boxes to select 3D image cross-

sections to be rendered.

The image can be zoomed in and out by means of the slider located at the right-hand-side of the
status bar. Also the zoom can be controlled by the menu options (View) or by the mouse wheel.

Proportions (voxel spacing) of the 3D image can be modified by means of voxel spacing dialog. To
open the dialog select View > Voxel spacing... from the menu, edit the values appropriately and
press OK.

It must be noted that the above mentioned options affect image visualization (rendering) only. They
do not affect the original image data. Also, modifying these options does not affect image analysis
(feature extraction), since the analysis is performed on the original image data.

Regions of interest list
Regions of interest docking window present a list of
regions of interest. The name (class name) of any
region can be modified by double-clicking and editing
of its text field. After feature extraction the name
becomes a label of feature vector and may be used in
supervised learning procedures. The color of the
region and associated image overlay may be changed
by double-clicking on the color box. The check-boxes

can be used to hide and show corresponding color overlays. The eye button toggles all the regions'
check boxes on the list. It must be noted that unchecking particular region does not erase or remove
it. Such the region is still used in the analysis. A selected region can be removed from the list, and
from the analysis, by pressing the minus button. A new region can be added to the list by pressing
the plus button. The information button invokes a dialog showing histogram and information about
the image fragment corresponding to the selected item on the list.

Editing regions of interest
First select a region for editing from the list. Regions of interest (2D image) can be drawn by means
of drawing tools available from the toolbox. All the modifications will apply to the currently
selected region. Be sure the selected region stays checked while drawing.

The tools enable drawing lines, rectangles, polygons and ellipses. To use particular tool the relevant
button has to be pressed. Then, the user can draw by means of a mouse and keyboard. The line is
drawn as the left mouse button is pressed and the mouse cursor is moved.

To draw a rectangle press the mouse left button as the cursor is located at the rectangle's corner
and move the mouse cursor toward location of the opposite corner. As the left mouse button is
pressed you can press Ctrl button to draw square or Shift button to rotate. The drawing is completed
when the mouse button is released.

To draw a polygon user has to click on the consecutive vertices of the polygon. To finalize and
enclose the polygon double-click the left mouse button or press Enter.

To draw an ellipse user has to press the mouse as the cursor is located at the center of the ellipse
and then move the mouse cursor. As the left mouse button is pressed user can press Ctrl button to
draw a circle or Shift button to rotate. The drawing is completed when the mouse button is released.

The flood-filling tool can be used when the image is shown in three-level mode. You need to
select the grey-level thresholds by means of sliders located at the bottom of the histogram. Then,
click the left mouse button as the cursor is within the area to fill.

The existing region can be moved or copied . To move the selected region press the mouse, move
the cursor to the new location and release the mouse button. To copy and merge keep Shift pressed
when releasing the mouse button. To copy and create a new region keep Ctrl pressed.

All the drawing tools can be used in combination with the eraser . As the eraser stays pressed the
tools are used to erase fragments of existing region areas. The cleaning tool can be used to
immediately erase the currently selected region. Note that the region is cleaned, however it is not
removed from the list.

There are additional tools available from the Edit menu. The tools enable image thresholding,
joining or splitting regions, and mathematical morphology operations.

To set drawing tools attributes use Tool options dialog
(Edit > Tool options).

Editing volumes of interest
If the 3D image is loaded the image features are computed within volumes of interest. The regions
of interest docking window present a list of such the volumes. The toolbox with drawing tools
changes to make available tools for shaping 3D volumes.

The tools enable drawing lines and inserting blocks, such as cubes, tubes or ellipsoids. To use
particular tool the relevant button has to be pressed. All the modifications will apply to the currently
selected volume. The volume can be shaped by means of a mouse and keyboard.

The line is drawn as the left mouse button is pressed and the mouse cursor is moved. The lines
are drawn on the surface of cross-sections displayed on the screen.

To insert a block, one of the three buttons cube , tube ,
or ellipsoid , have to be pressed. To insert the block click
on the rendering area. The block is initially positioned at the
center of the image. Alternatively, if the Shift is pressed
while clicking, the block will be positioned at the location of
previously inserted block. Next, the block can be moved,
rotated, resized or its proportions can be changed. To do this
move the mouse cursor while pressing the left mouse button
or turn the mouse wheel. If no keys on the keyboard are
pressed the block is rotated (mouse move) or resized (mouse
wheel). If the Shift is pressed the block is moved. Pressing
the Alt (or Alt+Shift) enables changes of the block
proportions. To change orientation and location of the image

together with the block keep pressing on the Ctrl or Ctrl+Shift buttons. To complete the procedure
double-click the left mouse button or press Enter.

The flood-filling tool can be used when the image is shown in three-level mode. You need to
select the grey-level thresholds by means of sliders located at the bottom of the histogram. Then,
click the left mouse button as the cursor points on appropriate location on one of the displayed
cross-sections.

The existing volume of interest can be moved . To move the selected volume click the left mouse
button. Then move, rotate or scale the volume in the similar way as described above. To complete
the procedure double-click the left mouse button or press Enter.

You can edit individual cross-sections of volumes of interest by means of 2D
editing tools. To do so select appropriate cross-section to edit by means of X, Y or Z
slider. Turn the image in such a way that the cross-section to edit is directed toward

you. Press the 2D mode button and edit the volume's cross-section. When you finish editing, press
3D mode button to return to 3D image view mode.

Feature list dialog

Select menu option Analysis > Options to open Feature extraction options dialog and to edit list of
features for computation. The dialog consists of two tab-pages with two sets of options, the first one
for feature extraction from regions of interest, and the second for computation of features locally
applied for map computation or point driven computation.

The feature names are presented as a tree view. Individual tree branches represent specific
parameters or stages of computation algorithms. Leaves define complete names of the features for
extraction. Double-clicking on the individual branch opens a drop box or a spin box which enable
selection of some alternative option. Branch or a leave can be removed by selection it and pressing
the button. A new branch can be created by selecting a parent branch and pressing the button.

The edited list of feature can be stored to a file or loaded from a file after pressing buttons available
at the bottom of the dialog. It must be noted that loading feature list from a file will augment the
existing list with the feature names from the file. To replace the existing list with the new one select
the root of the tree and press before loading data from the file.

Refer to the Feature naming section for more information on the feature naming convention,
meaning of parameters and the algorithm name abbreviations.

MzGenerator and MzGengui

MzGenerator and MzGengui are programs for image feature extraction. MzGenerator is a purely
console application that does not create any graphical interface. In contrast, MzGengui creates a
simple window with a progress bar. Except this difference, the two programs accept the same list of
command line arguments and implement the same procedures for feature computation.

The programs work in three feature extraction modes. They enable

(1) computation of feature values within predefined regions of interest,
(2) computation of features within specified neighborhoods around indicated locations, and
(3) computation of feature maps.

In mode (1) the input for the program is an image from which the features are extracted together
with the regions of interest masks. In mode (2) the input is the image from which the features are
extracted, and another image with dots indicating the locations (centers of neighborhoods). In mode
(3) the input consists of the image for feature maps computation. The input image from which the
features are extracted should be in TIFF (Tagged Image File Format) or NIFTI (Neuroimaging
Informatics Technology Initiative) formats. By default MaZda uses TIFF in case of two-
dimensional images and NIFTI for 3D tomographic images. The masks, if they overlap, should be
delivered in multi-page TIFF format. If the masks do not overlap, they may by provided as image
with black background and individual region areas filled with unique colors.

In modes (1) and (2) the results are stored into a text file in CSV (comma separated vectors) format.
The file can be loaded into MzReport module or into spreadsheet programs (eg. LibreOffice Calc).
The mode (3) produces stacks of images (maps) which grey-scales represent local feature values.
The maps are stored in multi-page TIFF format and can be loaded into MzMaps module. Also, this
format is accepted by selected image processing software (eg. ImageJ). In all the modes the
additional input for MzGenerator is a list of names of features to be extracted from the image.

The list of the program arguments is listed when the program is run with --help or /? switch. The list
is as follows:

-m, --mode <mode> Set <mode> of the analysis to: 'local' or 'roi',
-q, --query Queries for feature names template
-i, --input <file> Load image from <file>. 16bit tiff is available
-f, --features <file> Load feature list from <file>
-r, --regions <file> Load masks or regions of interest form <file>
-o, --output <file> Save results to csv or floating-point multipage tiff <file>
-c, --category <string> Force category name
 By default a category name is retrieved from regions file
-s, --step <int> Step in pixels in map computation, default is 1
-x, --save-hex Save double precision results in hexadecimal format
-a, --append Append data to output file if available

-d, --debug-log Set filename for debug info
/?, --help Display this help and exit

The examples of usages, which correspond to the above listed working modes, are as follows:

(1) MzGenerator -m roi -i image.tiff -r masks.tiff -f featurenames.txt -o result.csv
(2) MzGenerator -m local -i image.tiff -r dots.tiff -f featurenames.txt -o result.csv
(3) MzGenerator -m local -i image.tiff -f featurenames.txt -o result.tiff

Explanation of other options:

-q, --query is used by the MaZda module to query for available computation algorithms. When -q is
combined with the -m switch, MzGenerator prints a tree of available image processing and feature
extraction algorithms.

-s, --step <int> defines an integer value n used for maps computation (3). To speed up computation
the feature values are computed only for every n-th line and every n-th row of an image. The other
feature values in the map are interpolated.

-x, --save-hex the feature values in CSV file are hexadecimally-coded to preserve accuracy of
double precision numbers.

-a, --append this is to append new feature vectors to already created CSV file. The feature names
list is acquired from the first line of the output CSV file. Therefore, the -f switch should not be used
together with the -a switch.

Scripting
To automate feature extraction for multiple images and masks, the user can write a script
(Unix/Linux) or a batch file (Dos/Windows). The below examples show how to extract features
from image files stored in the current directory. The images are stored in TIFF format, recognized
by a .tiff extension, and are accompanied by mask files of the same names but with a .roi
extensions.

Linux Bash

#!/bin/bash
MzGenerator -m roi -f ./features.txt -o ./output.csv
for i in *.tiff
do
 MzGenerator -m roi -i "$i" -a -r "${i%.tiff}.roi" -o ./output.csv
done

Windows batch

@echo off
SetLocal EnableDelayedExpansion
MzGenerator.exe -m roi -f features.txt -o output.csv
for %%i in (*.tiff) do (
 set a=%%i
 set b=!a:~0,-5!
 set c=!b!.roi
 MzGenerator.exe -m roi -i %%i -a -r !c! -o output.csv
)

or optional

@echo off
MzGenerator.exe -m roi -f features.txt -o output.csv

for %%i in (*.tiff) do (
 MzGenerator.exe -m roi -i %%i -a -r %%~ni.roi -o output.csv
)

Feature extraction algorithms

Feature naming
Feature values in qmazda result from several steps of image processing and feature extraction
procedures. Moreover, the values can be computed at different parameter setups. Therefore, the
multi-stage feature computation creates a problem of feature name uniqueness. Using traditional
feature names such as mean, variance or entropy would be insufficient to identify particular
characteristics. To prevent this situation, feature names are combinations of symbols that uniquely
identify the way in which the value was generated. The symbols uniquely identify the complete
image processing scheme, feature extraction algorithm and the algorithm parameters.

Feature name in qmazda is composed of components, called feature name stubs. They identify
specific image preprocessing step, feature value computation algorithm or corresponding
parameters. The stubs in feature name are arranged from the left to the right, coding consecutive
computation steps.

For example, in region-based extraction, a name BN6GrlmHLngREmph indicates that the blue (B)
color component's intensity was normalized (N) and then quantized with six (6) bits per pixel. The
Grlm stub identifies the gray-level run-length matrix algorithm. The letter H identifies horizontal
direction of runs and LngREmph is an abbreviation of Long Run Emphasis feature name.

Feature names for maps computation or for computed within specified neighborhoods, differ from
feature names for region-based extraction. They consist of additional stub defining shape and size
of the neighborhood or a sliding window. For example c7 denotes the circular shape with radius
equal to seven. The stub can fall on the right or on the left from the stub defining intensity
normalization and quantization, e.g. BN6c7GrlmHLngREmph or Bc7N6GrlmHLngREmph. In the
first case the normalization is performed within the entire image, in the second case the
normalization is applied locally to the neighborhood or to the sliding window area.

Color components
To apply feature extraction algorithms, which were designed for analysis of monochrome images,
the color image is converted to monochrome color component images. There are different color
models which define the components in different ways. MzGenerator applies conversion based on
the following models: RGB, YIQ, YUV, HSB, CIE XYZ and CIE L*a*b*. The color components
are identified by letter-codes and conversions are performed by means of the corresponding
formulas.

Name Letter-
code

Color
model

Conversion formula

Brightness Y YUV (299 R + 587 G + 114 B) / 1000

Red R RGB R

Green G RGB G

Blue B RGB B

U-channel U YUV (886 B – 587 G – 299 R + 886 Θ) / 1772

V-channel V YUV (– 114 B – 587 G + 701 R + 701 Θ) / 1402

Hue (UV) H HSB Θ
2 π

arg(886 B – 587G – 299 R
886

+ j – 114 B – 587G – 701R
701)

Saturation S HSB
0,937√(886 B – 587G – 299 R

886)
2

+(– 114 B – 587 G –701 R
701)

2

I-channel I YIQ (– 3213 B – 2744 G + 5957 R + 5958 Θ) / 11916

Q-channel Q YIQ (–3111 B –5226 G + 2115 R + 5226 Θ) / 10452

U normalized u YUV
0.114 Θ (((886 B – 587G – 299 R)

(299 R+587 G+114 B+1))+1)
V normalized v YUV

0.299 Θ(((−114 B−587G+701R)

(299 R+587G+114 B+1))+1)
I normalized i YIQ

0.20786 Θ(((– 321.3 B – 274.4 G+595.7 R)

(299 R+587 G+114 B+1))+2.8185)
Q normalized q YIQ

0.26817 Θ(((311.1 B−522.6 G+211.5 R)

(299 R+587G+114 B+1))+0.8903)
Hue (IQ) h HSB Θ

2 π
arg(− 886B – 587G – 299R

886
− j – 114 B – 587G – 701R

701)

Parameter Θ = 216 - 1 represents maximum grey level.

Example image and its color components below.

Y U V

h H S

Normalization and quantization
Images obtained from different equipment or images acquired at different settings vary with
brightness and contrast. This difference may affect feature values in unwanted way. To overcome
this problem, MzGenerator implements image gray-level normalization procedures, which can be
used optionally. The normalization is applied to the region of interest area for region based
computation, or for all the image or the neighborhood area in local mode.

The particular procedure is identified by one of the following characters appearing in the feature
name. The character is followed by n parameter defining number of bits used for gray-level coding.

D - the image is analyzed as is, no normalization is performed.

S - the maen value μ and standard deviation σ of grey-levels are computed. The range for further
computation is <μ-3σ, μ-3σ>.

M - the minimum and a maximum grey-levels found in the region of interest define a new range.

N - the area grey-level histogram percentiles are computed. The new range is defined by first and
ninety-ninth percentiles <p1, p99>.

The normalized image Iout is computed pixelwise, according to the following formula:

I out=2n (I in−min)

(max−min+1)

where Iin is an original monochrome image, <min, max> defines a new range and n defines number
of bits per pixel.

Sliding window
Names of feature maps or these of locally computed features consist of additional stub, a character
and number, defining shape and size of the neighborhood. The character c indicates a neighborhood
of a circular shape and the letter s a square. The following number r defines a radius (in pixels).

In case of 3-dimensional images the characters c and s define a ball-shaped neighborhood or a cube
respectively. It must be noted, the r defines a radius in voxels. The voxel size (or spacing) does not
affect the created neighborhood.

Directions coding
In algorithms such as Grey-level run-length matrix or Grey-level co-occurrence matrix, features are
computed for specified directions or orientations. In the feature name, the directions are coded by
single characters: H - 0º (horizontal), Z - 45º, V - 90º (vertical) and N - 135º. The below diagram can
be useful to match the particular character with a direction.

In some algorithms (e.g. Gabor transform) intermediate angles are used, coded by characters:
U - 22.5º, S - 67.5º, G - 112.5º and J - 157.5º.

In three-dimensional images the above mentioned directions apply to cross-sectional plane. In some
algorithms the direction along the depth direction (perpendicular to the cross-sectional plane) is
coded by X.

Character coding the orientation The orientation vector

H (1.000, 0.000, 0.000)

U (0.924, 0.383, 0.000)

Z (0.707, 0.707, 0.000)

S (0.383, 0.924, 0.000)

V (0.000, 1.000, 0.000)

G (-0.383, 0.924, 0.000)

N (-0.707, 0.707, 0.000)

J (-0.924, 0.383, 0.000)

X (0.000, 0.000, 1.000)

Histogram statistics
Image brightness histogram of the region of interest or the neighborhood is normalized (divided by
the number of pixels). The feature name consist of the Hist stub to indicate the histogram-based
feature extraction and the name of one of the following statistics.

Area= ∑
(x , y)∈ROI

1

Mean=μ=∑
k=0

Θ

k p(k)

Variance=∑
k=0

Θ

(k−μ)2 p(k)

Skewness=Variance
−

3
2 (∑

k=0

Θ

(k−μ)3 p (k))

Kurtosis=Variance−2(∑
k=0

Θ

(k−μ)4 p(k))−3

Perc 01=min (K) : ∑
k=0

K

p (k)≥0,01

Perc 10=min (K) : ∑
k=0

K

p (k)≥0,10

Perc 50=min (K) : ∑
k=0

K

p (k)≥0,50

Perc 90=min (K) : ∑
k=0

K

p(k)≥0,90

Perc 99=min (K) : ∑
k=0

K

p(k)≥0,99

The p(k) is the normalized histogram function.

p(k)=
1

Area ∑
(x , y)∈ROI {

1 : I (x , y)=k
0 : I (x , y)≠k

Parameter Θ = 2n - 1 represents maximum grey level, n is a number of bits per pixel, I(.) is an
image, and (x, y) are pixel coordinates.

Gradient map features
The gradient magnitude map is computed within the region of interest (ROI) according to the
following formula:

|G (x , y)|=√ (I (x , y+1)− I (x , y−1))
2
+ (I (x+1, y)−I (x−1 , y))

2

where I is an image, and x, y are pixel coordinates, the horizontal and the vertical.

For normalization the Area is computed:

Area=∑ 1

The summation Σ includes all the pixels such that:

(x , y)∈ROI∧(x , y−1)∈ROI∧(x , y+1)∈ROI∧(x−1 , y)∈ROI∧(x+1 , y)∈ROI

The feature name consist of the Grad stub to indicate the gradient-map-based feature extraction and
the name of one of the following statistics.

Mean=
1

Area∑|G (x , y)|

Variance=
1

Area∑ (|G(x , y)|−Mean)
2

Skewness=Variance
−

3
2 1

Area
∑ (|G (x , y)|−Mean)

3

Kurtosis=Variance−2 1
Area∑ (|G (x , y)|−Mean)

4
−3

NonZeros=
1

Area
∑ {1 : |G (x , y)|>0

0 : |G (x , y)|≤0

Grey-level run-length matrix features
The grey-level run-length matrix holds counts p(k, l) of runs of pixels having the same grey level k
and length l. The runs are established optionally in various directions. The feature name consist of
the Grlm stub to indicate the grey-level run-length matrix feature extraction algorithm, then the
character to indicate direction of runs: H, V, Z, N or X. The following features are computed based
on the matrix.

Area=∑
k=0

Θ

∑
∀ l

p(k , l)

ShrtREmph=
1

Area∑k=0

Θ

∑
∀ l

p(k ,l)

l2

LongREmph=
1

Area∑k=0

Θ

∑
∀ l

l2 p(k ,l)

GLevNonUni=
1

Area∑k=0

Θ

(∑
∀ l

p(k , l))
2

MGLevNonUni=
1

Area2∑
k=0

Θ

(∑
∀ l

p(k ,l))
2

RLNonUni=
1

Area
∑
∀ l

(∑
k=0

Θ

p(k ,l))
2

MRLNonUni=
1

Area2∑
∀ l

(∑
k=0

Θ

p(k ,l))
2

Fraction=
∑
k=0

Θ

∑
∀ l

p(k ,l)

∑
k=0

Θ

∑
∀ l

l p(k , l)

Parameter Θ = 2n - 1 represents maximum grey level, where n is a number of bits per pixel.

Grey-level co-occurrence matrix features
The co-occurrence matrix holds counts of co-occurrences of pixels having some specified gray-
levels. The pairs of pixels are considered, such that one of the pixels is situated at the offset (Δx, Δy)
from the other one. The co-occurrence matrix (asymmetric) is defined as:

CΔ x ,Δ y (i , j)= ∑
(x, y)∈ROI

{1 : I (x , y)=i∧I (x+Δ x , y+Δ x)= j
0 : otherwise

Optionally the co-occurrence matrix (symmetric) is defined as:

CΔ x ,Δ y (i , j)= ∑
(x , y)∈ROI

{1 : (I (x , y)=i∧ I (x+Δ x , y+Δ x)= j)∨(I (x+Δ x , y+Δ x)=i∧ I (x , y)= j)
0 : otherwise

The size of the matrix in both the cases is 2n×2n where n is a number of bits per pixel.

The normalized matrix, or probability of co-occurrence, is defined as:

pΔ x,Δ y(k , l)=
C Δx ,Δ y(k , l)

A

where A=∑
k=0

Θ

∑
l=0

Θ

C Δx ,Δ y (k ,l)

The features are computed from the following formulas (we omit Δx, Δy for simplicity):

AngScMom=∑
k=0

Θ

∑
l=0

Θ

p2
(k ,l)

Contrast=∑
m=1

2n+1

(m2 pdif(m))

Correlat=
1

ρk ρl
∑
k=0

Θ

∑
l=0

Θ

((k+1)(l+1) p(k , l)−μk μl)

SumOfSqs=∑
k=1

Ng

∑
l=1

N g

(k−μk)
2 p(k , l)

InvDfMom=∑
k=0

Θ

∑
l=0

Θ p(k ,l)

1+ (k−l)2

SumAverg=∑
m=1

2n+1

(m psum(m))

SumVarnc=∑
m=1

2n+1

((m−SumAverg)
2 p sum(m))

SumEntrp=−∑
m=1

2n+1

psum(m) log (p sum(m))

Entropy=−∑
k=0

Θ

∑
l=0

Θ

p(k ,l)log (p(k , l))

DifVarnc=∑
m=1

Θ

(i−μdif)
2 pdif (m)

DifEntrp=−∑
m=1

2n

pdif(m) log (pdif (m))

where:

Θ=2n
−1

μk=∑
k=0

Θ

∑
l=0

Θ

k p(k ,l)

μl=∑
k=0

Θ

∑
l=0

Θ

l p(k ,l)

σ k=∑
k=0

Θ

∑
l=0

Θ

(k−μk)
2 p(k , l)

σ l=∑
k=0

Θ

∑
l=0

Θ

(l−μl)
2 p (k ,l)

psum(m)=∑
k=0

m−1

p(k ,m−k)

pdif(m)={
∑
k=0

Θ−m

(p(k , m+k)+ p(m+k , k)) , m≠0

∑
k=0

Θ−m

(p(k ,k)) , m=0

μdif=∑
m=0

2 Θ

m pdif (m)

The feature name stub for grey-level co-occurrence matrix consists of Glcm (if features are derived
from the symmetric matrix) or Glch (if features are derived from the asymmetric matrix), offset
direction and distance, and the name given by the above feature extraction formulas. The direction
is identified by one of the characters: H, V, Z, N or X. The distance is given by a number d = 1,
2, ...9.

Name stub Offset (Δx, Δy) Offset (Δx, Δy, Δz)

Hd (d, 0) (d, 0, 0)

Vd (0, d) (0, d, 0)

Zd (d, d) (d, d, 0)

Nd (d, -d) (d, -d, 0)

Xd N/A (0, 0, d)

Autoregressive model
Autoregressive model assumes dependence of pixel intensity on intensities of adjacent pixels. In
MzGenerator the dependence is given by the formula:

I (x , y)=θ1 (I (x−1 , y)−μ)+θ2 (I (x , y−1)−μ)+θ3 (I (x−1 , y−1)−μ)+θ4 (I (x+1 , y−1)−μ)+μ+ e(x , y)

where

μ=
∑

x, y∈ROI

I (x , y)

∑
x, y∈ROI

1

and θ1, θ2, θ3 and θ4 are parameters of the model, and e(.) is an error function. The parameters are
computed to minimize mean squared error of e(.) within the given region of interest (ROI).

Autoregressive model parameters are identified by the Arm stub, and names Teta1, Teta2, Teta3,
Teta4. In addition a standard deviation of the error is computed identified by a Sigma name.

Gabor transform
The Gabor transform locally decomposes an image signal to its frequency components. The
frequency components are computed by convolution with a complex number kernel, defined as:

g(x , y)=e
−(x2

+ y2
)

2 σ 2

(cos(β)+ jsin (β))

where

β=ω (x cos(α)+ y sin (α))

The parameters define frequency (ω), orientation (α) and standard deviation of the Gaussian
envelope (σ). It is assumed the kernel size equals 6σ+1 pixels in both horizontal and vertical
directions, with center at (x, y) = (0, 0).

The features computed by this algorithm are identified by Gab stub, size of the Gaussian envelope
(σ), orientation (H, U, Z, S, V, G, N, J or X), period (2π/ω) of the sinwave, and a name Mag.

The MzGenerator computes average magnitudes of Gabor transform within the morphologically
eroded region of interest.

Mag=
∑

(x , y)∈ROI '

g (x , y)

∑
(x , y)∈ROI '

1

The ROI' indicates the region of interest morphologically eroded by means of circular structuring
element of a radius equal to 3σ (the radius of the kernel). The erosion prevents image fragments
located outside of the region of interest, to have any impact on the computation results.

Local binary patterns
Local binary patterns (LBPs) algorithm assess inequality relations in brightness between pixel in
some neighborhood. In a specific pair of pixels in such the neighborhood, brightness of one of the
pixels may be higher, equal or lower than the brightness of the other pixel. Situation when the value
is higher is coded by one. Otherwise it is coded by zero. Several pairs in the neighborhood are
examined to establish their codes, and the codes for a particular neighborhood are arranged together
to form a binary pattern. Histogram of binary patterns computed for different neighborhoods within
a specified region of interest becomes a descriptor of the region.

There are three algorithms for computation of local binary patterns (LBPs) implemented in qmazda,
the over-complete, transition and center-symmetric. The algorithms differ with the arrangement of
pixels in the neighborhoods and in for which pixels the inequality relations is established. The
figure presents the example of 8-pixel neighborhood and arrows to indicate which pairs of pixels
are used to establish the inequality relation. The qmazda implementation enables computation of
LBPs in neighborhoods of three different sizes – of 4, 8 and 12 pixels. The below table presents
schemes of all the available neighborhood sizes and algorithms.

The LBP features (the histogram values) are identified by the Lbp stub, followed by one of the three
algorithm identifiers: Oc (over-complete), Tr (transition) or Cs (center-symmetric), and followed by
the number of neighbors: 4n, 8n or 12n.

Histogram of oriented gradients
Histogram of oriented gradients (HOG) counts occurrences of gradient orientations. The HOG
features are identified by the Hog stub, followed by the number of angular bins: 4b, 8b, 16b or 32b.

Discrete wavelet transform
Qmazda enables computation of Haar discrete wavelet transform and the energies in its frequency
sub-bands. The computation is performed excursively within the user-defined region of interest. The
related features are identified by the DwtHaar stub followed by the sub-band identifier. The sub-
band identifier defines a scale of the transformation: S1, S2, S3 or S4, and the configuration of the
low-pass and high-pass filters in vertical and horizontal directions: HH, HL or LH.

Morphological (shape) attributes
Morphological attributes are specific since they are not really extracted from the image. The
features are computed exclusively from regions of interest masks, which are binary images. Such
the regions of interest may be defined by the user. In MaZda application there are drawing tools
which can be used for this purpose. Another possibility to create such the regions is to use programs
for automatic image segmentation. Qmazda package do not support such the programs, however
they can be found elsewhere or they can be created and tailored to a specific image processing
problem.

All the attribute names related to the shape of image regions begin with Mor. There are three groups
of morphological attributes computed by MzGenerator and MzGengui. The first group of features is
computed by the algorithms implemented in the original MaZda project. Attribute names which
belong to this group start with MorMz prefix. The other group of features is computed based on the
algorithms implemented in OpenCV library. These attribute names begin with MorCv prefix. The
third group are the selected algorithms implemented in Insight Toolkit library, and the feature names
in this case begin with MorItk.

It must be noted that some basic features such as an area or a perimeter are computed by all the
three approaches and thus may be multiplicated. Moreover, attributes which refer to the same
property may slightly differ in value, since the algorithm implementations may use different
approximation approaches. What is more, the MorMz and MorCv attributes are computed in pixel
related image space and they do not care about the image resolution related to mm or inches. In
contrast, implementations in Insight Toolkit library (with MorItk prefix) make use of image
resolution information if it is available from the image file.

The list of attribute names computed by the custom-made implementation.

MorMzX horizontal coordinate of gravity center

MorMzY vertical coordinate of gravity center

MorMzF area, number of the object pixels

MorMzSpol diameter of the area equivalent circle

MorMzSmax maximum diameter, distance between the most distant contour points

MorMzAox orientation angle

MorMzUg specific perimeter, sum of distances between the contour pixels

MorMzUw convex perimeter

MorMzFmin mainimum Feret’s diameter measured as distance between two parallel lines

MorMzFmax maximum Feret’s diameter measured as distance between two parallel lines

MorMzMmin minimum Martin’s radius, a distance between gravity center and contour pixels

MorMzMmax maximum Martin’s radius, a distance between gravity center and contour pixels

MorMzMaver Martin’s average radius

MorMzUl profile specific perimeter

MorMzS1 contour-skeleton maximal thickness

MorMzS2 contour-skeleton minimal distance

MorMzLsz skeleton length

MorMzS length of the circumscribing rectangle of minimal area

MorMzL width of the circumscribing rectangle

MorMzD1 diameter of profile inscribed circle of maximum area

MorMzD2 diameter of circumscribing circle

MorMzW1 ratio of radii (big to small) of circumscribing ellipsis of minimal area

MorMzW2 4π (profile area) / (profile perimeter)2

MorMzW6 1 / W2

MorMzW3 (profile perimeter)2 / (profile area)

MorMzW4 Ul / Uw

MorMzW5 F / Lsz

MorMzW7 D2 / D1

MorMzRs perimeter2 / 4π area

MorMzRf ratio of horizontal to vertical Feret’s diameters

MorMzRc circularity

MorMzRm Malinowska ratio

MorMzRb Blair-Bliss ratio

MorMzRd Danielsson ratio

MorMzRh Haralic ratio

MorMzW8 L / S

MorMzW9 L S / F

MorMzM2x horizontal second order moment of inertia

MorMzM2y vertical second order moment of inertia

MorMzEr average distance from gravity center

MorMzEl average distance from contou

MorMzNc number of contour pixels

MorMzNv number of cavities

MorMzNl number of profile contour pixels

MorMzNsz number of skeleton pixels

MorMzNi number of skeleton branches

MorMzNx number of skeletal junctions

MorMzNo number of skeletal loops

The list of attribute names computed by algorithms implemented in the OpenCV.

MorCvPixelsCount area in number of pixels

MorCvX

MorCvY

MorCvProfileArea the area limited by the outer contour

MorCvEquivDiameter diameter of a circle of equivalent area

MorCvPerimeter perimeter computed from the outer contour

MorCvRoundness roundness

MorCvElipsAngle angle of the fitted ellipse

MorCvElipsHeight long diameter of the fitted ellipse

MorCvElipsWidth short diameter of the fitted ellipse

MorCvElipsElong elongation, the ratio of long to short diameter of the ellipse

MorCvMomTheta properties computed from the moments of inertia

MorCvMomElong

MorCvHuMom1 this one and the following are the Hu moments

MorCvHuMom2

MorCvHuMom3

MorCvHuMom4

MorCvHuMom5

MorCvHuMom6

MorCvHuMom7

MorCvChRectWidth width of the described rectangle of the minimal area

MorCvChRectHeight height of the described rectangle of the minimal area

MorCvChRectArea area of the described rectangle of the minimal area

MorCvChArea area of the convex hull

MorCvChPerim perimeter of the convex hull

MorCvChMinFeret

MorCvChMaxFeret

MorCvRadDist attributes based on the radii analysis

MorCvRadbb

The list of attribute names computed by the class LabelImageToShapeLabelMapFilter implemented
in the Insight Toolkit library. See the documentation of the class for explanation of the attributes.

MorItkArea

MorItkFullyConnectedFalse

MorItkFullyConnectedTrue

MorItkSizeX

MorItkSizeY

MorItkSizeZ (for 3D images only)

MorItkFeretDiameter

MorItkCentroidX

MorItkCentroidY

MorItkCentroidZ (for 3D images only)

MorItkPrincipalMomentX

MorItkPrincipalMomentY

MorItkPrincipalMomentZ (for 3D images only)

MorItkTilt orientation of principal axis

MorItkElongation

MorItkPerimeter

MorItkRoundness

MorItkEquivalentSphericalRadius

MorItkEquivalentSphericalPerimeter

MorItkEquivalentEllipsoidDiameterX

MorItkEquivalentEllipsoidDiameterY

MorItkEquivalentEllipsoidDiameterZ (for 3D images only)

MzReport

The MzReport is a program for data analysis, selection of most discriminative features, visualization
of feature vector distributions, supervised machine learning and testing of the resulting classifiers.
The input for the program are comma-separated vector files generated by the MzGenerator or
MzGengui feature extractors.

Input data format
The input data for the MzReport are text files in comma separated vectors format. The first line of
the text file is a header defining the feature names. The names in the first line are separated by
commas or optionally by tabulators or semicolons. The last name in the header must be a word
Category. The following lines are feature vectors. Each line contains as many feature values as were
defined in the header. The last one is a category or a class name. The machine learning algorithms
implemented in MzReport require that there are groups of vectors belonging to at least two different
categories.

The below example presents a text file with 12 vectors containing four features (YD8HistMean,
YD8HistVariance, YD5GlcmH1Contrast and YD5GlcmH1SumEntrp) belonging to three different
classes or categories (blask, signora and bordo).

YD8HistMean,YD8HistVariance,YD5GlcmH1Contrast,YD5GlcmH1SumEntrp,Category
150.73,640.396,2.47158,1.34435,blask
150.247,990.643,2.86776,1.44421,blask
149.207,1004.67,3.22943,1.46546,blask
159.879,707.333,2.60532,1.36647,blask
145.947,806.024,2.05959,1.40508,signora
151.515,896.406,2.19412,1.37556,signora
151.345,776.586,2.52834,1.39291,signora
143.219,634.31,1.89288,1.32859,signora
145.951,742.408,2.4687,1.32371,bordo
142.599,1010.95,2.90421,1.46354,bordo
146.672,731.912,2.48124,1.37167,bordo
142.627,624.588,1.70794,1.32108,bordo

The data can be loaded after the user selects File > Open report... or by the drag-and-drop
technique. When loading, the data is transposed in such a way that the feature vectors are presented
in columns and feature values are arranged in the rows, and then displayed in a spreadsheet. The
user may join reports from several files by loading or drag-and-dropping additional files. This will
work as long as the feature names in the additional files are the same as the names of the first one.
The data from the MzReport can be stored to a file by means of the File > Save… menu option.

Manual data selection
The user may manually select columns (vectors) or rows (features) to be selectively processed by
the data analysis algorithms. For this reason, the rows and columns are accompanied by checkmark
symbols. The user may check or uncheck an individual row or a column by double clicking on the
symbol next to it. Only the data contained within the checked columns and the checked rows is used
in the data processing procedures executed afterwards. The data contained by the checked columns
and the checked rows may be saved to a separate file by means of the File > Save selected… menu
option.

Manual checking or unchecking hundreds of rows or columns one by one would be time
consuming. Therefore the program provides tools to enable checking or unchecking more vectors or
features by a single click. These tools are available from Edit > Vectors and Edit > Features sub
menus. The options to check or uncheck highlighted fields refer to the group of fields marked
(highlighted) with a mouse. The tool to uncheck nan refers to columns or rows containing a nan
value (not a number). The nan indicates that the value of the particular feature was not computed.
Since further steps of analysis are performed excursively for the data belonging jointly to the
checked columns and the checked rows, unchecking vectors containing the nan fields may be
necessary to obtain correct results of such the analysis.

Vector distribution visualization
Distributions of the vectors may be inspected visually by choosing the Analysis > Scatter plot. This
option opens a window with a three dimensional scatter plot. The plot is presented on the left hand
side of the window. It can be rotated by pressing the left mouse button and moving the mouse
cursor over the plot. The plot resizes along with the window.

Vectors belonging to different categories are presented with various symbols and colors. The
symbols and the names of categories are listed at the top-right corner of the window. Below, there
are three drop boxes listing feature names. The vectors are presented within the three dimensional
space of the features selected by means of these drop boxes. The following are the four buttons,
which enable to change colors and typeface of the vector symbols, animate the plot, or save the plot
to an image file. Below the buttons there is an editable text field to define character symbols used
by the plot.

The window can be closed by pressing the Select or the Close button. In case of pressing the Select
button, all the feature names in the main window are unchecked except the three selected in the
drop boxes. Pressing the Close button does not modify any selections in the main window.

Machine learning
Machine learning algorithms are implemented as separate shared or dynamic linking libraries. Their
functionality is available through sub menus of Analysis menu option of MzReport program. The
algorithms enable selection of most discriminative features, which is a subset of features most
suitable for data classification purposes. The simplest are feature filtration methods
(Analysis > Feature filtration), which examine discrimination ability of individual features one by
one. Afterwards, a rank of features having the highest abilities is presented. The user can accept the
features. This results in unchecking all the other feature names from the vertical headers in the main
window. Currently there are two optional criteria implemented, which quantitatively asses
discrimination ability of individual features – these are the Fisher’s discriminant and the mutual
information.

In many cases the discrimination power of individual feature may reveal only when it is
accompanied by some other attributes. Therefore, in an alternative wrapper approach, the
discrimination ability of several features is evaluated jointly. The discriminative power of such the
feature subset can be established in relation to the performance of some classification algorithm.
Therefore, in wrapper strategy, attributes are chosen to maximize proficiency of a particular
classifier. In the implemented algorithm the wrapper selection starts with examination of individual
features, which is equivalent to the filtration approach. Then, the features are ranked according to
their discrimination power. Next the pairs of features, or two-dimensional feature subspaces, are
examined. The features are combined in pairs starting with the features gained the highest ranked in
the previous step. Again, features are ranked according to their best performance in pairs. This
procedure continues by increasing the number of jointly examined attributes. The user can limit the
maximum number of jointly examined features (subspace dimensionality) as well as the maximum
time intended for search.

If the number of selected features is still unacceptably large, it is possible to perform further
dimensionality reduction by projection of the original feature space into a new space of lower
dimensionality. This yields a less numerous collection of new features having discrimination ability
almost as good as the original set of features.

The next step in machine learning is classifier training. The objective of this stage is to gain
decision rules to categorize data vectors. The rules may be imagined as boundaries in the feature
space – decision boundaries. If such a boundary is a line, a plane or a hyperplane, the classifier is
called to be linear. In this case feature vectors appearing on one side of the boundary falls into the
one class and the vectors located on the other side falls into the other class. If the shape of the
boundary is more complex, the classifier is called nonlinear.

The below table summarizes currently implemented plugins with respect to their abilities in feature
selection, feature space projection, classifier learning and classifier testing.

Feature filtration Linear discriminant
analysis

Convex hull
discrimination

Support vector
machines

Feature filtration + + +

Wrapper approach + +

Space projection +

Supervised training + + +

Testing confusion matrix confusion matrix confusion matrix

Decision boundary hyperplane convex hull optional kernels

Multiple classes classifier ensembles one from the others +

Plugins which support training also enable testing. To test the
classifier the user have to select Test classifier… option from the
plugin’s submenu. If there are more than one classifier available, the
user is provided with the dialog window to select classifier for
testing. This usually takes place after feature selection procedure
which examines feature sub spaces of various dimensionalities. It is
usually reasonable to select only the classifier using the highest
number of features (dimensions). Specifically in linear discriminant
analysis plugin, the classifier ensembles are used. Therefore in this
case all the classifiers with the highest number of dimensions should
be selected. It must be noted that if the user selects several classifiers
and they make conflicting decisions, the final membership is
indeterminate.

As the result of testing procedure the user is presented with the confusion matrix. The rows of the
matrix represent actual classes of vectors membership, and the columns represent classes predicted
by the classifier. If the actual and predicted classes are of the same names and they are arranged in
the same order, then the elements (highlighted with green) located on the diagonal count correct
classifications, and the other fields of the matrix count classification errors. Indeterminate decisions
are counted in the last column of the matrix (highlighted with yellow).

Cross-validation
The classification rules should be validated by means of data not used in the training procedure.
One of the methods used in machine learning to separate training and test data sets is a k-fold cross-
validation, which randomly splits set of all the vectors into a fixed number of subsets – folds. Some
number of these folds are used for training whilst the others are used for testing. The procedure of
training and testing can be repeated for various combination of the folds. MzReport supports the k-
fold cross-validation procedure, however it does not automatize it.

To randomly split vectors into several folds one needs to select Edit > Vectors > Folds option from
the program’s menu. Then, in the Folds dialog window the folds number have to be selected. The
data subsets are generated when the Random allocation button have been pressed. The list of folds
with the check boxes enable selection of active folds. Now, the user needs to Apply selection of
folds and close the dialog. In the report window, all the vectors (columns) belonging to selected
folds are checked and the others are unchecked. The selected (checked) feature vectors can be now
used for feature selection and classifier training. Next, the user can select Edit > Vectors > Invert
selection and perform classifier testing with the remaining vectors. The procedure for the classifier
training and testing may be repeated for various combination of folds selected in the Folds dialog.

Classifiers file format
The classifiers which result from the machine learning procedures can be stored as text files by
choosing Save classifier… option from the plugin’s submenu. The text file specifies a type and
number of classifiers, name of each of the classifiers, names of classes recognized by an individual
classifier, names of features (attributes) required by the classifier, and numerical parameters which
specify decision boundaries. The below example presents a file of three (@Classifiers 3) linear
(MzLinearClassifiers2013) classifiers. The specification of every individual classifier starts with the

word @ClassNames followed by the number of classes recognized by the classifier and names of
the classes (Norm and Spoiled). The following lines start with the word @FeatureNames, which in
similar way define number of features required by the classifier and names of these features (eg.
B_YS5GlcmN5Entropy A_ID8HistPerc10). To identify particular classifier MzReport assignes a
name to it by concatenation of the class names recognized by the classifier and the number of
features it uses. The names are separated by a hash character and the number of features (feature
space dimensionality) is followed by the letter D (eg. Norm#Spoiled#3D).

MzLinearClassifiers2013
@Classifiers 3
@ClassNames 2 Norm Spoiled
@FeatureNames 1 B_YS5GlcmH1SumEntrp
@Values 2
1 -25.7829
2 -36.8988 2.04709
@ClassNames 2 Norm Spoiled
@FeatureNames 2 B_YS5GlcmN5Entropy A_ID8HistPerc10
@Values 2
2 -9.41758 0.266528
2 17.2005 2.72964
@ClassNames 2 Norm Spoiled
@FeatureNames 3 A_ID8HistMean B_YS5GlcmV1Entropy A_QD8HistVariance
@Values 2
3 0.20229 -10.6935 -0.20179
2 12.9349 3.15684

The support vector machines plugin was build upon the LibSvm library. Unlike the other plugins, it
is able to store only a single classifier in a single file. The file starts with the
SvmMazdaClassifiers2017 identifier, which is followed by the information on number of classifiers
(@Classifiers – always equal to one), class names (@ClassNames), feature names
(@FeatureNames) and information on data normalization (@Values). A specification of the actual
classifier is provided after the word @LibSvmClassifier and it is compatible with the format
established by the LibSvm library.

SvmMazdaClassifiers2017
@Classifiers 1
@ClassNames 3 Norm Broken Infected
@FeatureNames 4 A_YS5GlcmV1AngScMom A_HD8HistPerc01 B_YD5GrlmHRLNonUni
B_YD5GlcmN1Contrast
@Values 2
4 97.813 0.612372 0.000617165 16.6423
4 -0.0479689 -93 -4123.03 -0.376612

@LibSvmClassifier
svm_type c_svc
kernel_type rbf
gamma 0.008
...

Libraries used
MzReport plugins use the following free and open source libraries:

Alglib – linear discriminant analysis (http://www.alglib.net/)

Qhull – convex hull decision boundary (http://www.qhull.org/)

LibSvm – support vector machines (https://www.csie.ntu.edu.tw/~cjlin/libsvm/)

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.qhull.org/
http://www.alglib.net/

MzTrainer

MzTrainer is a console tool for selecting the most discriminating attributes and for machine
learning. It takes csv file with vectors of attributes as an input and produces a text file with
classification rules based on the most discriminating attributes. The program can use one of the
plugins designed for the MzReport program. Thus, it has the same functionality of attribute
selection and machine learning as the MzReport application. Therefore, to run data analysis the user
has to provide information on which plugin (machine learning algorithm) shall be used and also to
provide a setup (a list of parameters) for the plugin.

The example command line for the application in Linux may look like this:

./MzTrainer -p ./libLdaPlugin.so -c config.txt -i in.csv -o out.txt
Observe that in Windows the plugin library files have .dll extension instead of .so extension which
is used in Linux.

MzTrainer.exe -p libLdaPlugin.dll -c config.txt -i in.csv -o out.txt
The resulting out.txt file consist of classification (prediction) rules and may be used as an input
classifier (predictor) for MzPredict, MzReport or MzMaps programs.

The configuration file should be edited by the user prior to calling MzTrainer. It should contain text
lines with names of parameters (properties) and their values. The simple way to produce such the
file is to run the MzReport program first and observe the Options window of the selected algorithm.
When editing the configuration file for MzTrainer, one can follow the list of the algorithm options
from MzReport. The following illustration present example options for training of the linear
classifier, both in the window available in MzReport and in the text file created for MzTrainer.

Normalization standardize
Threshold accuracy
Direction lda
Time 60
Dimensionality 3

MzPredict

MzPredict is a console tool for data classification, or with other words, prediction of category. The
input for the program are a classifier file and a file with vectors in the comma separated values
(CSV) format. For more information on the classifier file format and the CSV file format see the
MzReport section.

The output are text lines, each line indicating a number and a name of predicted category. The
number and the order of lines in the output match the number and the order of vectors in the CSV
file.

Examples of use
Let us assume that we have a classifier file named predictor.txt prepared by means of the MzReport
tool. The content of the file may look like this one:

MzLinearClassifiers2013
@Classifiers 1
@ClassNames 2 Bad Good
@FeatureNames 3 height YD8HogO16b7 YD5GlcmN5Area
@Values 2
3 -0.00730388 -0.729595 9.52738e-06
2 -2.09744 29.2809

This particualr classifier recognizes two categories: Bad and Good, and requires three attributes to
do this: height, YD8HogO16b7 and YD5GlcmN5Area.

Let as assume that the input file name is input.csv. It may look like this:
height,YD8HogO16b7,YD5GlcmN5Area,vD8HistPerc01,YD8ArmTeta1,Category
301,0.350765,87638,80,0.905263,Broken
248,0.720922,71026,80,0.887093,Broken
259,0.508249,68096,78,0.912827,Broken
239,0.502737,69102,78,0.908557,Broken
234,0.522566,72552,76,0.943935,Broken
468,0.666904,139866,86,0.83612,Fine
530,0.698431,168362,84,0.822966,Fine
500,0.851011,159968,84,0.84404,Fine
535,0.729207,181710,85,0.834936,Fine
448,0.743843,137736,84,0.844527,Fine

It consists of several lines. The first line is a header which lists the attribute names. The other lines
define vectors of attributes and the corresponding category names. The column with the category
name is non obligatory. What is important, the CSV file has to deliver all the attributes which are
required by the classifier.

We call the MzPredict program in the following way:

MzPredict -c predictor.txt -i input.csv -o output.txt

or optionally, using standard input and output streams:

MzPredict -c predictor.txt < input.csv > output.txt
The program saves the classification results into the output file. Every line of the output file consists
of the predicted category index and the category name, and corresponds to the feature vectors stored
in the input CSV file:

1 Bad
1 Bad
1 Bad
1 Bad
1 Bad
2 Good
2 Good
2 Good
2 Good
2 Good

Optional -v or -verbose switch make the MzPredict to print additional information. It provides some
information on the classifier, the ground-truth categories and the attribute names. Moreover, if we
do not provide the input or the output file names, the program will use standard input or standard
output streams instead.

If we call the MzPredict program in the following way:

MzPredict -v -c predictor.txt -i input.csv

The output will be printed to the console and it will contain the additional information:

Classifier: MzLinearClassifiers2013
Classes:
 0 !
 1 Bad
 2 Good
Features required:
 height
 YD8HogO16b7
 YD5GlcmN5Area
Features in csv:
 height
 YD8HogO16b7
 YD5GlcmN5Area
 vD8HistPerc01
 YD8ArmTeta1
1 Bad : Broken
1 Bad : Broken
1 Bad : Broken
1 Bad : Broken
1 Bad : Broken
2 Good : Fine
2 Good : Fine
2 Good : Fine
2 Good : Fine
2 Good : Fine

MzMaps

MzMaps is a tool for visualization of feature maps and for image segmentation. The input for the
program are multi page, floating point data tiff files produced by the MzGenerator or MzGengui
feature extractors. Moreover, the MzMaps module accepts classifiers from MzReport, which serve
as rules for image segmentation.

Maps can be loaded by means of File > Load feature maps option or by drag and drop technique.
When maps have been loaded, the list of all the maps is presented in the Layers docking window.
User can click on the particular map on the list, which will display the map in the main window.
Moreover, the currently selected map can be removed from the list by pressing the button.

The eye buttons enable selection of visualization modes. The eye button enables visualization in
gray-scale range. The three-level mode is used to choose grey-level thresholds. The grey-levels
or thresholds can be modified by means of the four sliders located below the list of the maps.
Moreover, the currently selected map can be viewed in pseudo-palette mode, which can be selected
from the combo box. The Slice slider enables to select particular cross-section if the 3D map is
presented. If the map is 2D the slider is disabled. The image can be zoomed in and out by means of
the Zoom slider located at the bottom of the docking window.

User can read the exact value of the feature by moving the mouse button to desired location on the
map and then clicking the left mouse button. The value is presented on the status bar at the bottom
of the MzMaps window.

The main function of the MzMaps is to test ability of classifiers created in the MzReport to perform

image segmentation. The MzMaps use the classifier plugins which are available through the
Analysis menu option. Particular classifier can be loaded from a file by means of Load classifier
menu options or by drag and dropping the classifier file to the main window of the MzMaps. To
perform the segmentation, user has to select a Segment image option associated with the particular
classification plugin. The results of the segmentation are presented in a new window.

It must be noted that the features required by the classifier must be present on the list feature maps.
Otherwise the classification result may be incorrect or the classifier will not work.

Tutorial: Region-based analysis

This tutorial explains:

✔ How to create regions of interest

✔ How to compute feature values

✔ How to perform discriminant analysis

✔ How to classify new data

In this tutorial we use image showing two varieties of rice.
The image was acquired by a flatbed scanner. The upper
two rows of the image show Basmati and the lower two
rows show Indonesia varieties. The goal of the analysis is to
find a way to recognize the variety of individual grains.

How to create regions of interest
Start MaZda module. Usually you need to click or double-click on the program's icon. Load an
image for analysis. You can use either a menu option File > Load image... or drag-and-drop the
image file to the image area of MaZda window.

 À main menu

 Á load, save and analysis tools

 Â region drawing tools

 Ã region of interest list

 Ä region of interest tools

 Å grey-levels sliders

 Æ image viewing switches

 Ç image area

 È zoom slider

The image is shown in grey-scale, with no color overlays. There is only one New item present on
the region of interest list.

The user can draw the regions manually by means of drawing tools Â. However, in this tutorial we
will create regions by grey-level thresholding.

Rename the default regions name. Double-click on the regions name New and enter the name
Basmati, which is a name of the first variety (class). Switch to the three-levels view mode Æ and
adjust sliders Å to see the image background in black and grains in grey.

Select option Edit > Threshold. A color overlay covering all the grains should appear on the image.
Select Edit > Morphology > Median to remove small areas and dust from the region of interest
(color overlay) area. Select Edit >Morphology to create individual regions for individual grains.
The regions should appear with various colors covering individual grains. Now, click on the first
region on the list Ã. This region still covers all the grains together and is no longer required.
Remove it from the list by clicking the button. Verify if all the grains are covered by the color
overlays. If you notice small overlays of dust you can remove them from the list manually, or
automatically with Edit > Remove small option.

The check-boxes in the region of interest list Ã enable to hide or show particular color overlays. If
the two or more overlays have similar color, clicking on the check-boxes can be useful to verify
which color overlay corresponds to a particular item on the list.

One by one, double-click on the names Ã which correspond to grains of Indonesia variety, and
change them to Indonesia. Now, every name on the list should match the variety of the grain
covered by the corresponding region.

How to compute feature values

Open the feature extraction options dialog with
Analysis > Options... and select the Region features
tab-page. Verify if the list of features to be computed
is present. Otherwise, load the feature list from a file

 or create the list manually. Accept the list of
features by pressing OK button.

In MaZda window select Analysis > Roi based computation to start feature extraction. Optionally
press the button of the Load, save and analysis Á toolbox. The progress of feature values
computation may be observed in Mazda generator window. After successful computation,
MzReport is started and the results are loaded into this module automatically.

How to perform discriminant analysis
The results are presented as a spread-sheet, where each column represents feature vector of
individual grain, and every row represents a value of particular feature. Make sure that all the
columns and all the rows are checked to be used for the following analysis. Also, verify if the
column headers show the names of the two varietal classes. Save the results to a file (File > Save...)

To perform linear discriminant analysis select Analysis > Linear discriminant analysis > Selection
and training... from the MzReport menu. The analysis options dialog will pop-up. It defines three
parameters, normalization, time and dimensionality.

The following analysis will search for feature
subsets up to three features (dimensionality = 3)
in the subset. It will normalize the feature value
distributions with respect to their means and
standard deviations (normalization =
standardize). The search will be limited in time
to 60 seconds (time = 60). Now, press the OK
button to start feature selection and machine
learning procedure.

After the analysis succeeds the dialog with the most discriminative features appears. Press OK
button to accept. Now, most of the feature names in MzReport are unchecked. The only checked
feature names are the features found by the selection procedure.

To visually inspect distributions of vectors in the
selected features subspace select
Analysis > Scatter plot... . You may change an
orientation of the plot by dragging it with the
mouse. The + symbols indicate feature vectors of
Basmati class and the o symbols indicate vectors
of the Indonesia variety. Verify if the vectors
belonging to different classes form separate
clusters, making it possible to separate the
clusters with a plane. Press Close to close the
dialog.

The procedure also creates rules for classification. To save the rules select
Analysis > Linear discriminant analysis > Save classifier... . The classification rules (classifiers)
are saved to the text file for further use.

To check the resulting classifiers select Analysis > Linear discriminant analysis > Test
classifier... In Select classifiers dialog, check the classifier (Basmati#Indonesia#3D) which
makes use of all the three selected features, uncheck all the others and press OK. The test
produces confusion matrix to indicate number of correctly and incorrectly recognized grains.

Note that the proper validation of any classifier requires that the test is performed on data not used
for the training. The above described classifier's check, makes the rough and quick verification, and
does not fulfill this requirement.

How to classify new data
This example explains:

✔ How to use classifiers

In this tutorial we use image showing rice grains
of unknown variety, Basmati or Indonesia.

In MaZda load the image and create regions of interest as explained in the previous tutorial.

Open the feature extraction options dialog with
Analysis > Options... and select the Region features tab-
page. Select main root of the feature tree. Press to
remove all the feature names. Press button to load
feature names from the text file with classification rules
created in the previous tutorial. Now the list of feature
names should consist of the three features previously
selected as the most discriminative. Press OK button to
accept. Next, press the button, or select
Analysis > Roi based computation, to start feature
extraction.

In the MzReport select Analysis > Linear discriminant analysis > Load classifier... to load the
classification rules created in the previous tutorial. Next, select Analysis > Linear discriminant
analysis > Test classifier... . In Select classifiers dialog, check the Basmati#Indonesia#3D classifier,
uncheck all the others and press OK.

The confusion matrix shows that all the New grains were
classified as Indonesia variety.

Tutorial: Image texture segmentation

This tutorial explains:

✔ How to compute local feature values

✔ How to perform discriminant analysis

✔ How to segment an image

In this tutorial we use a patchwork of two natural textures. The
image was artificially created for the need of this tutorial. However,
similar problems of texture segmentation can be found also in
natural images.

How to compute local feature values
Start MaZda module and load the image for analysis. Rename the default regions name to Starch.
To do so, double-click on the regions name New and enter the name Starch. Add another region by
pressing the Add region button in the Regions panel. Change the name of the new region to
Wood.

Now, select the Starch region from the list. Press the Pencil tool from the drawing tools toolbox.
Mark several dozen dots over the U-shaped starch region. The dots should be placed evenly over
the whole area of the region. Select the Wood region from the list and mark several dozen dots over
the background area of the wood cells texture.

Select Analysis > Options... to open the feature
extraction options dialog and select the
Local features tab-page. Select the field
defining a size of circular neighborhood (or
sliding window) and modify its value. The size
of the neighborhood should be big enough to
cover some representative piece of the texture,
so increase the size to 11. Press OK button to
accept. Next, press the button or select
Analysis > Point driven computation, to start
feature extraction.

After successful feature extraction MzReport is started and the results are loaded into this module
automatically.

How to perform discriminant analysis
The results are presented as a spread-sheet, where each column represents feature vector of circular
region created around one of the dots marked earlier. Make sure that all the columns and all the
rows are checked to be used for the following analysis. Also, verify if the column headers show
the names of the two texture classes. Save the results to a file (File > Save...)

To perform linear discriminant analysis select Analysis > Linear discriminant analysis > Selection
and training... from the MzReport menu. The analysis options dialog will pop-up. It defines three
parameters, normalization, time and dimensionality. Set the parameters to normalization =
standardize, time = 60 and dimensionality = 5. Now, press the OK button to start feature selection
and machine learning procedure. After the analysis succeeds the dialog with the most discriminative
features appears. Press OK button to accept. Now, most of the feature names in MzReport are
unchecked. The only checked feature names are the features found by the selection procedure.

The procedure also creates rules for image segmentation. To save the rules select
Analysis > Linear discriminant analysis > Save classifier... . The rules (classifiers) are saved to
the text file.

How to segment an image

Switch back to the MaZda window with the example
image still there. Open the feature options dialog
(Analysis > Options...) and select the Local features tab-
page. Now select the main root of the feature names tree
and press to remove all the feature names. Press
button to load feature names from the text file with
segmentation rules just created. Now the list of feature
names should consist of the features selected as the most
discriminative. Press OK button to accept. Next, press the

 button, or select Analysis > Maps computation from
the MaZda menu

After successful feature extraction the MzMaps module is started and the results are loaded into this
module automatically.

In MzMaps select Analysis > Linear
discriminant analysis > Segment image...

In Select classifiers dialog check the one with the highest
dimensionality (Starch#Wood#5D), uncheck the others and press
OK button.

Another MzMaps window opens to show the result of
segmentation. The binary image indicates the U-shape starch
region in black and the background wood cells texture in
white.

	Introduction
	MaZda
	MaZda window layout
	Loading and saving
	Image viewing options
	Regions of interest list
	Editing regions of interest
	Editing volumes of interest
	Feature list dialog

	MzGenerator and MzGengui
	Scripting

	Feature extraction algorithms
	Feature naming
	Color components
	Normalization and quantization
	Sliding window
	Directions coding
	Histogram statistics
	Gradient map features
	Grey-level run-length matrix features
	Grey-level co-occurrence matrix features
	Autoregressive model
	Gabor transform
	Local binary patterns
	Histogram of oriented gradients
	Discrete wavelet transform
	Morphological (shape) attributes

	MzReport
	Input data format
	Manual data selection
	Vector distribution visualization
	Machine learning
	Cross-validation
	Classifiers file format
	Libraries used

	MzTrainer
	MzPredict
	Examples of use

	MzMaps
	

	Tutorial: Region-based analysis
	How to create regions of interest
	How to compute feature values
	How to perform discriminant analysis
	How to classify new data

	Tutorial: Image texture segmentation
	How to compute local feature values
	How to perform discriminant analysis
	How to segment an image

