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Abstract

Nuclear magnetic resonance imaging (NMR-imaging), the so-called magnetic resonance imaging (MR-imaging), was performed

on five potato varieties stored at 4 �C and 95% relative humidity for two and eight months, respectively. An image analysis on the

obtained data and subsequent sensory analysis of the cooked potatoes displayed the high potential of employing advanced image

analysis on MR-imaging data from raw potatoes to predict sensory attributes related to the texture of cooked potatoes. In contrast

MR-imaging data were not found to correlate with specific gravity of the potatoes even though this parameter is normally found to

correlate with the sensory texture quality of cooked potatoes. We suggest that this imply that MR-imaging beside giving well-known

information about water distribution also gives information about anatomic structures within raw potatoes, which are of impor-

tance for the perceived textural properties of the cooked potatoes.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: NMR-images; MRI; Image analysis; Feature extraction; Potato texture; Quality prediction; Magnetic resonance imaging
1. Introduction

Texture is a very important quality attribute in most

food products. For most food products a high biological

variation between replicates exists. This biological

variation is one of the main challenges for the industry,

as the increased purchasing power and the increased

awareness of food quality by the consumers result in a
demand for products of high and uniform quality.

Hereby it becomes very important for the industry to be

able to supply products of uniform quality. Conse-

quently, the industry needs rapid on-line and at-line

methods to (1) sort the raw material into given texture

categories prior to processing, (2) predict the optimal
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use of the raw material and (3) adjust the processing to

obtain the optimal quality of the processed product.

Due to their nature, non-destructive measurement

methods are very attractive in the development of on-/

at-line methods. While infrared spectroscopic methods

have become very popular for this purpose in the food

industry, it is not until recently that nuclear magnetic

resonance (NMR) have been accepted as a technique
with relevance for quality determination. Low-field 1H-

NMR relaxation or high-field NMR-imaging, the so-

called magnetic resonance imaging (MR-imaging or

MRI) have shown to have potential to predict food

quality attributes, and hereby may be attractive methods

to implement as in-/at-line methods in the future food

production.

NMR relaxation is a rapid non-invasive method to
determine the distribution of water in foods (Cornillon,

1998; McCarthy, 1994). Water distributions in foods are

very important characteristics in relation to food texture
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quality. Low-field NMR relaxation data have thus been
shown to be highly correlated with the texture properties

in rice, bread, meat and potatoes (Fjelkner-Modig &

Tornberg, 1986; Ilker & Szczesniak, 1990; Ruan et al.,

1997; Seow & Teo, 1996; Steen & Lambelet, 1997;

Thybo, Bechmann, Martens, & Engelsen, 2000).

Like NMR relaxation, MR-imaging is also able to

measure water properties, e.g. the abundance and the

spatial distribution of free and bound water inside bio-
logical materials (McCarthy, 1994). In contrast to

commercial low-field relaxation equipment, existing

MR-imaging apparatus can already be used as non-

invasive measuring methods on most foods. In the past,

MR-imaging has mostly been applied within the medical

area, where it has achieved general acceptance as a

powerful tool for the diagnosis and assessment of tu-

mours in the human brain and liver by visual interpre-
tation of images (Lerski et al., 1999). As the technology

has matured, new applications have been developed di-

rected at non-medical areas, such as physiology and

anatomy (MacFall & Van As, 1996). MR-imaging

techniques have been used for determination of the in-

ternal structure and the quality of fresh and processed

products mostly in terms of internal breakdown, bruises,

voids, and post-harvest studies of fruits and vegetables
(Clark, Hockings, Joyce, & Mazucco, 1997; McCarthy

et al., 1995). For apples this non-destructive method has

been used to investigate internal changes in watercores

and development of browning during storage (Clark &

Burmeister, 1999; Clark & Richardson, 1999).

MacFall and Van As (1996) were the first to show

that different MR-imaging methods of potatoes result in

different patterns of contrast and information. A sub-
sequent study demonstrated the use of MR-imaging in

displaying the water distribution in potatoes during a

drying and a water re-absorption process (Ruan et al.,

1997). In most of the investigations, the MR-images

were analysed quantitatively in terms of relaxation times

(T1 and T2) or qualitatively by e.g. ocular judgement of

the MR-images. In contrast, the use of image analysis

on MR-images is sparsely described in the food litera-
ture.

Image analysis is based on a resolution of the struc-

ture in the image, the so-called texture of the image

(Haralick, Shanmugam, & Dinstein, 1973; Materka &

Strzelecki, 1998). There is no generally accepted defini-

tion of image texture. However, image texture may be

viewed as a regular pattern that fills fragments of image

surface. Such fragments have two main properties: there
is significant variation in intensity levels between nearby

pixels, and there is homogeneity at some spatial scale

larger than the resolution of the image. Intuitively,

texture provides a measure of properties such as light-

ness, granulation, uniformity, density, roughness, regu-

larity, linearity, frequency, phase, directivity, coarseness,

randomness, fineness, smoothness, etc. In computer
image analysis, there are a number of techniques for
calculation of image texture properties (features). These

are usually categorised into structural, statistical (sto-

chastic), model-based, and transform methods (Haralick,

1979; Materka & Strzelecki, 1998). It can be difficult to

predict which of these methods and which features

computed by these methods are the most useful for

classification purposes of examined image textures.

Digital images of biological origin usually have het-
erogeneous composition. Within such images there may

be fragments representing several, separable parts of the

studied object as well as of the background surrounding

this object. Often, the object itself or an interesting part

of the object occupies only a small portion of the image

domain. In such a case, the region of interest (ROI),

which holds information about aspects of interest of the

studied object, must be created. However, it must be
small enough to exclude other irrelevant image regions.

For these reasons, there is a need to carry out research in

order to optimise the practical use of image analysis on

both (I) finding/defining an assortment of features that

would extract information useful for classification of

different biological images and (II) finding regions of

interest within such images that would be the most ap-

propriate for computing these features.
Recently, Balzarini, Nicula, Mattiello, and Aliverti

(2001) carried out quantification and description of

fracture network in lithologies by image analysis of MR-

images. Computer-assisted image analysis has previously

been used to determine the information on texture/

structure in the images object composed of different

plastic foams and glass beads producing different po-

rosity (Materka, Strzelecki, Lerski, & Schad, 1999a,
1999b, 2000). These studies showed that it is possible to

classify objects with different internal structure with re-

spect to MR-image grey tone distribution of the images

(white to black). However, this method has until now

only been used in structure classification of different

tumours in the human brain and liver (Lerski et al.,

1999), and only very recently has it been used for simple

analysis of the structure and texture in potatoes (Thybo,
Andersen, Karlsson, Dønstrup, & Stødkilde-Jørgensen,

2003). The latter study showed that in order to extract

more relevant quantitative information from the images,

more advanced image analysis of MR-images seems

necessary. Therefore the new image analysis computer

package for extraction of numerous different image

texture features in digitised images (Materka et al.,

1999a, 1999b, 2000) may be useful in future interpreta-
tion of MR-imaging data on foods.

The sensory texture quality is of the uppermost im-

portance in cooked potatoes, as this is one of the most

critical quality attributes in consumer evaluation of

potatoes. The biological variation between potato tubers

is high and is known to influence the texture of cooked

potatoes. Consequently, development of on-line/at-line
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sensors enabling a grading and sorting of potatoes in
relation to their final qualities before marketing, long-

term storage or processing is highly relevant. As men-

tioned above it was recently shown that MR-imaging is

able to illustrate an uneven spatial distribution of water

within potato tubers indicating a high variation in the

distribution of water and an abundance of water be-

tween tubers (MacFall & Van As, 1996; Thybo et al.,

2003). In the latter study, the relationship between
simple histogram features from the image analysis of the

MR-images and dry matter content of potatoes was also

investigated, however, no high correlation was obtained.

The aim of the study was to investigate the ability of

using the non-destructive and non-invasive MR-imaging

technique to describe the sensory texture quality of

cooked potatoes. This was determined by studying the

correlation between advanced image analysis features
determined in different regions of raw potatoes, and

sensory texture attributes of cooked potatoes. More-

over, correlations between specific image features and

sensory data were also carried out.
2. Material and methods

2.1. Potatoes

Five potato varieties (Sava, Berber, Ditta, Bintje-
medio-dry-matter and Bintje-high-dry-matter) grown in

experimental fields at the Danish Institute of Agricul-

tural Sciences were investigated. Potato samples were

harvested in 1999 and analysed after two and eight

months of storage in November 1999 and in May 2000,

respectively. The potatoes were stored at 4 �C at 95%

relative humidity. To obtain a homogeneous material

within a given sample, the five potato varieties were
graded in three dry matter bins with 1% span in dry

matter using a salt solution. This selection procedure

gave a total of 27 different potato sample sets, as Bintje-

high-dry-matter was not present in the second storage

time.

Five potato tubers were randomly selected for specific

gravity analysis and MR-image analysis. Forty potato

tubers were used for sensory analysis.

2.2. Specific gravity

Specific gravity was determined as the ratio: Weight

in air/(weight in air)weight in water) (Schippers, 1976).

2.3. MR-image acquisition

Five potato tuber replicates of each sample were
scanned by MR-image equipment (Sisco 300/183,Varian

Inc. Palo Alto Ca., USA) by scanning a 2 mm thick

layer in the middle of the tuber. The images were ac-
quired as T1 weighted spin echo images with a repetition
time TR ¼ 600 ms and echo time TE ¼ 10 ms, and a field

of view of 6 cm. Each image was obtained as a sum of 2

scans with a resolution of 256 · 220 points in the time

domain, which was interpolated to 256 · 256 points

during Fourier reconstruction. Each image was then

converted to the standard BMP image format and rep-

resented by 256 grey levels. Unfortunately, for technical

reasons a gain setting of the scanner could not be re-
produced between the two storage times. To minimise

this error, the two sets of images were re-normalised to

have the same average background level.
2.4. MR-image feature extraction

Textural features of potato interior in MR-images

were computed using the MaZda software version 2.21

(Szczypi�nnski, Materka, & Strzelecki, 2001). The soft-

ware calculated 259 various image texture features for

grey-level images, derived from first-order histogram,
image gradient map, co-occurrence matrix, run-length

matrix and parameters of autoregressive model. MaZda

also computed feature maps that represented distribu-

tions of given features within image.

The first-order histogram shows the distribution of

the image pixels� grey-level intensity. Using this method,
nine features were calculated. Calculation of the grey-

level histogram involved single pixels thus it simply
summarises some statistical image information without

gaining any information about the image texture. Gen-

erally, histogram-based features provide information

about average level of intensity, variation of intensity,

symmetry and flatness of histogram.

Image gradient calculation is one of several com-

monly used techniques for finding edges within image.

Hence, five gradient-based features provided quantita-
tive information about borders between light and dark

image elements.

Run-length matrix (RLM) is defined as the number

of times that a run has a certain grey level. Five run-

length matrix-based features were computed for four

directions of run (horizontal, vertical, 45� and 135� run).
Co-occurrence matrix (COM), the second-order his-

togram, is a square matrix that estimates joint proba-
bility of two pixels having particular intensities. Eleven

features (Haralick et al., 1973) were computed for four

directions and five distances between pixel pairs––in

total 220 features.

RLM based features and co-occurrence matrix-based

features give quantitative information about structure of

image texture pattern (Materka, Strzelecki, & Szczypi�nnski,
2000). These are sensitive to the directivity of texture.
Comparison of features computed for different directions

provided important knowledge about texture directivity.

Twenty RLM features were calculated.
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The autoregressive model (ARM) assumes that pixel
intensity is a weighted sum of neighbouring pixel in-

tensities. Four parameters were computed for minimal

noise variance. The ARM parameters describe relations

of grey-level intensities between neighbouring pixels.

Due to the radial directive structure in a potato (Fig.

1a–c) determining a horizontal (Fig. 1d) and a vertical

(Fig. 1e) structure, the image analysis was performed on

these regions and on the full region. Feature maps were
computed for these three regions. Features derived from

COM, RLM and ARM are sensitive to the texture di-

rectivity. Due to this, the values computed within re-

gions containing texture with vertical directivity differ

from the values computed within regions containing

horizontal directivity texture. When striking an average

of the horizontal and vertical directivity, some impor-

tant information may be lost. The feature maps (Fig. 1d
and e) demonstrate two main regions with low and high

brightness representing low and high feature values.
2.5. Sensory analysis

Whole potatoes of each sample were peeled and

boiled in water for 20–25 min, depending on variety. All

samples were analysed in four replications in a rando-
mised design with six samples per sensory session. The

samples were evaluated while hot, and one tuber per

sample was served for each assessor. A panel of ten

trained assessors evaluated the texture by quantitative
Fig. 1. MR-image of a raw potato. (a) indication of radial structure, (b) artific

software showing different values for horizontal and vertical structure (d, e) an

analysis (f).
descriptive analysis (Thybo & Martens, 1998). The
sensory texture attributes included: hardness, cohesive-

ness, adhesiveness, mealiness, graininess and moistness.

The attributes were evaluated on a 1–15 point unstruc-

tured line scale with the anchor point �none� on the left

side and �very strong� on the right side. The mean of the

assessors� scores was calculated and used for statistical

analysis.
2.6. Statistical analysis

The variations in sensory texture attributes and MR-

image features were determined by multivariate data

analysis on mean data of the replicates using The Un-

scrambler statistical package (v7.5 CAMO A/S, Nor-

way, www.camo.com). Principal component analysis

(PCA) revealed the structure in the data. Partial least
squares regression (PLSR) was used to investigate rela-

tionships between sensory attributes and MR-image

features in terms of prediction of the sensory texture

attributes (Y -variables) from MR-image features (X -
variables) on the data set of 27 samples. Different groups

of image features (X -variables) were included in the

prediction. MR-image features from (1) the vertical re-

gion, (2) the horizontal region or (3) the full region were
investigated by the following features (A) histogram, (B)

gradient, (C) RLM, (D) COM and (E) ARM.

The prediction of specific gravity (Y -variable) from
MR-image features (X -variables) was investigated by
ial model of the radial structure, (c) feature maps computed by MaZda

d different templates of regions (full, vertical and horizontal) for image

http://www.camo.com
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PLSR. Since specific gravity and MR-images were
obtained on the exact same potato tuber due to the non-

destructive character of the methods, this data set in-

cluded 135 objects (27 samples � 5 replicates). The used

image analysis approach determines many different MR-

image features. Therefore an analysis of how the specific

features correlated with the obtained sensory attributes

and specific gravity was also included, as this will be a

natural step to increase effectiveness and optimise future
image analysis of MR-images. From the PLSR model,

the significant features were extracted by the so-called

Jack-knifing (Martens & Martens, 2001). The significant

MR-image features were determined by a double Jack-

knifing where the data set was separated into five subsets

of samples. In each sample subset, the predictive per-

formance of the significant features was investigated.

The significant features were defined as those being
significant in at least two of the five sample subsets.

For all predictions, the performance of the prediction

was determined as the explained variance of the Y -
variables by the X -variables, correlation coefficients

between measured and predicted variables and root

mean-squared error of prediction (Martens & Martens,

2001). All the data were standardised, and the model

evaluations were based on full leave-one-object-out
cross validation (Martens & Martens, 1986).
3. Results and discussion

3.1. Regions of interest within potato for image analysis

Fig. 1a illustrates a typical structure in a MR-image

from a potato. Three different areas were distinguished:

a centre (pith), ‘‘below-peel-layer’’ (cortex), and the area

in between called ‘‘interior’’ (storage parenchyma) (Fig.

1b). The grey level distribution within the centre and the
below-peel-layer was rather constant. In contrast, a

large structure variation was visible in the interior part

of the potato. Due to the anisotropy of the potato tissue,

the structure in the image was basically the same inde-

pendently of how the potatoes were placed in the MR

equipment. A visual inspection of the image indicated

that an artificial model of the structure could be de-

scribed by radial lines starting from the centre of the
potato moving to the outer layer (Fig. 1c). The feature

maps from the image analysis (Fig. 1d and e) demon-

strated two main regions, a vertical region and a hori-

zontal region with low and high brightness representing

low and high feature values. Due to this, the image

features computed within regions containing texture

with vertical directivity differ from those computed

within regions containing horizontal directivity texture,
and maybe thus contributing to different types of in-

formation in the images. Consequently, image features

were calculated from both the vertical and the hori-
zontal region and compared with image features from
the full region to optimise the regions of interest within a

potato image.

3.2. Classification of potato varieties by MR-image and

sensory analyses

Fig. 2 illustrates the variation in the 259 MR-image

features obtained from the full region within the potato

using PCA. Three principal components (PCs) ac-

counted for 80%, 8% and 5% of the total variation in the

MR-image features and summarised the variations be-

tween varieties, storage times and dry matter grading

(Fig. 2a). The differences between the varieties caused

the largest variation in the MR-image features (PC1)
(Fig. 2b). A minor effect of storage was observed in PC2.

The effect of dry matter grading was limited. The MR-

images showed differences in colour intensity and

structure between varieties, and thus differences in water

distribution and restraint. The darker the tissue, the

more free is the present water. This shows that water is

unevenly spatially distributed within the potato tubers

and with different abundance. The patterns in the im-
ages of the potatoes showing that the darkest sections

was found in the centre of the potato tuber and in the

layer below peel are similar to the patterns reported by

others (MacFall & Van As, 1996; Thybo et al., 2003). A

PCA on the MR-image features from the horizontal and

the vertical regions resulted in the same classification of

variety, storage and dry matter as was found when the

full region was used.
Likewise, a PCA of the sensory data showed a similar

grouping of the potato samples with respect to variety,

storage and dry matter variation (Fig. 3). This indicates

that the sensory data and the MR-image features de-

scribed a similar variation. �Bintje-medio-dry-matter�
was a very mealy and adhesive variety with low cohe-

siveness and hardness. Oppositely, the varieties Sava

and Ditta were low in mealiness and adhesiveness and
score high on cohesiveness and hardness. The variety

Bintje-high-dry-matter was mealy with a grainy texture.

For all varieties, moistness was higher after eight

months of storage compared with two months of storage

(Fig. 3, PC 2). The sensory attributes spanned out the

variation in texture quality, however, even in a third PC

cohesiveness and hardness were highly correlated, and

these variables expressed the same information. Conse-
quently, cohesiveness was removed in the subsequent

prediction of texture qualities.

3.3. Prediction of sensory texture quality from MR-

images

The MR-image features extracted from the three re-

gions (full, horizontal and vertical) within the potato

predicted the sensory attributes to different extents



Fig. 2. A PCA plot of the variation in 259 MR-image features (a, loading plot) obtained in the full region in 27 potato samples (b, scores plot).

Footnote: the numbers represent percent dry matter range. (d) November 1999 storage, (�) May 2000 storage.
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(Table 1). The explained variance, correlation coeffi-
cients (Table 1) and RMSEP values indicated that the

highest prediction was obtained by the MR-image fea-

tures from the full region within the potato compared

with the MR-image features from horizontal and verti-

cal regions. For hardness, 76% of the variation was

predicted by all the MR-image features, for adhesiveness

54% and for moistness 50% of the variance was pre-

dicted, resulting in correlation coefficients of 0.86, 0.72
and 0.69, respectively. For the attributes mealiness and

graininess, the predictions were rather low as the ex-

plained variances were below 55%. This means that the

geometrical attributes giving the mealy and granular

perception were not correlated with MR-image attri-

butes. As the full region described the largest proportion

of the variation in the sensory attributes, only the full

region was subsequently used in the prediction of the
individual sensory texture attributes from the individual

groups of MR-image features. Interestingly the vertical

region seemed to predict mealiness considerably better

(46%) than both the full and the horizontal regions, and

this implies that a further emphasis on regions of in-

terest may also make prediction of mealiness possible by

MR-imaging.

3.4. Individual image features for prediction of texture

quality

To further reveal the information obtained by the

image analysis on the potato MR-images, a correlation

analysis between the specific image analysis features and
Table 1

Prediction of five sensory texture attributes from the full set of 259 MR-imag

determined in three regions within the potatoes (see Fig. 1)

Predictor 259 features from the full region 259 features fro

Sensory attribute % explained vari-

ance (PCs)

r % explained va

ance (PCs)

Hardness 76 (4) 0.862 70 (4)

Adhesiveness 54 (4) 0.720 45 (4)

Mealiness 36 (4) 0.584 24 (4)

Graininess 29 (4) 0.526 26 (4)

Moistness 50 (4) 0.690 37 (4)

The predictions are given by correlation coefficients between measured and

Table 2

Prediction of three sensory texture attributes and specific gravity from the H

image analysis given by correlation coefficients between measured and predi

Predictor Histogram features Gradient features

Attribute r r
Hardness 0.791 0.751

Adhesiveness 0.671 0.434

Moistness 0.485 0.438

Specific gravity 0.456 0.367
the sensory attributes hardness, adhesiveness and
moistness having high correlation with all 259 MR-

image features was carried out. Furthermore, a reduc-

tion of extracted features was exploited. An overview of

the predictions of hardness, adhesiveness and moistness

from the individual groups of MR-image features is

given by correlation coefficients between measured and

predicted sensory attributes in Table 2. A PLS1 regres-

sion was performed for each sensory attribute and fea-
ture group in turns. The COM features explained the

highest proportion of the variation in hardness (78%).

The COM features could almost explain the same

amount of variation in hardness as the variation ex-

plained by all five feature groups. However, the histo-

gram features and the gradient features explained some

part of the variation in hardness (63% and 59%, how-

ever). Groups of sub-features within the COM features
were highly correlated with hardness. These features

were also highly interrelated. Therefore non-correlating

features were extracted, and the prediction of hardness

from 3 features gave a correlation between measured

and predicted hardness of r ¼ 0:880 (Fig. 4). In com-

parison, the inclusion of all 220 COM features gave a

correlation of r ¼ 0:876 (Table 2) indicating that a

variable selection can be performed without loss in
prediction of hardness.

For adhesiveness, the RLM features and the COM

features explained the highest proportion of the varia-

tion (64% and 57%, respectively). Twenty features were

included in the RLM features. Three groups of RLM

features contributed to the explanation of adhesiveness.
e analysis features (Histogram, Gradient, RLM, COM, ARM features)

m the horizontal region 259 features from the vertical region

ri- r % explained vari-

ance (PCs)

r

0.824 70 (4) 0.830

0.658 52 (4) 0.710

0.480 46 (4) 0.660

0.491 34 (4) 0.570

0.582 47 (4) 0.671

predicted sensory texture attributes using PLS regression.

istogram, Gradient, RLM, COM and ARM feature groups from MR-

cted sensory texture attribute using PLS regression

RLM features COM features ARM features

r r r
0.250 0.876 0.677

0.760 0.734 0.622

0.555 0.689 0.430

0.398 0.336 0.314
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Fig. 4. A PLS prediction of sensory hardness from three MR-image

features (COM features). Footnote: (�) November 1999 storage, (�)
May 2000 storage.
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A selection of one variable from each of these groups

gave a correlation coefficient between predicted and

measured adhesiveness of r ¼ 0:784 (Fig. 5) compared
with r ¼ 0:760 for all twenty RLM features and

r ¼ 0:734 using all COM features (Table 2).

The highest predictions of moistness were obtained

by using the COM features (r ¼ 0:689, Table 2). Thus,
the prediction of moistness was lower than the predic-

tion of hardness and adhesiveness. A specific group of

COM features were highly correlated with moistness.

However, these features alone could not predict moist-
ness. A set of three COM sub-features predicted

moistness (r ¼ 0:694) to the same value as was found by

using all COM features.

The present research on analysing the structures in

the MR-images contributes with knowledge of high

importance in relation to rational development of po-
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Fig. 5. A PLS prediction of sensory adhesiveness from three MR-im-

age features (RLM features). Footnote: (d) November 1999 storage,

(�) May 2000 storage.
tential on-line methods to determine sensory texture
quality. The COM features were very relevant features

for the prediction of hardness, adhesiveness and moist-

ness, however, it was not the same sub-groups of COM

features that predicted hardness, adhesiveness and

moistness (not shown). This means that the COM sub-

features determined different structures with varying

relevance for hardness, adhesiveness and moistness.

Moreover, the RLM features predicted a larger pro-
portion of the variance in adhesiveness. Once more, this

indicated that different MR-image structures were rele-

vant for the individual sensory texture attributes, and

these structures could be identified and quantified.

The MR-image features predicted 70% of the varia-

tion in hardness, which means that MR-imaging may be

a useful method to sort potatoes with regard to hardness

in the cooked potato. Hardness as well as mealiness,
adhesiveness and moistness is an important quality at-

tribute for sorting potato tubers into classes with vari-

ous technological qualities. Therefore these sensory

attributes are relevant for the usage of potatoes in the

industry, and these results may thus contribute to the

development of on-line methods to determine final

quality and usage of potatoes from measurements on

raw potatoes.

3.5. Prediction of specific gravity from MR-images

The specific gravity of the 135 objects (27 samples · 5
replicates) was normally distributed within the range

1.056–1.095 g/cm3. This range in specific gravity corre-

sponded to a dry matter variation of approximately 14–

23% dry matter. The 259 MR-image features obtained

using the full region approach showed no high correla-

tions with specific gravity (r ¼ 0:461, Table 2). The

prediction of specific gravity from each of the five MR-

image feature groups ranged from r ¼ 0:336–0.461 with
the highest prediction for the histogram features and all

259 features. The low correlation between the MR-

image features and specific gravity indicates that MR-

imaging does not reflect specific gravity, which is highly

correlated with the dry matter content of the potatoes. A

poor correlation between dry matter and the histogram

features from MR-images has previously been reported

(Thybo et al., 2003). These results strongly indicate that
MR-images determine structural/anatomic features

within the raw potato which are of importance for the

sensory texture experience of cooked potatoes and dif-

ferent from those related to dry matter of the raw po-

tato. NMR relaxation data from raw potatoes have been

shown to be highly correlated with the dry matter con-

tent (Thygesen, Thybo, & Engelsen, 2001) which also

explains some of the sensory texture attributes in cooked
potatoes (Thybo et al., 2000). Overall, this indicates that

the use of MR-imaging data from raw potatoes includ-

ing both image analysis data as used in the present study
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and more traditional relaxation characteristics from the
images would be a highly relevant approach in the

prediction of sensory texture quality of cooked potatoes.

This approach will be reported elsewhere.
4. Conclusions

As one of the first, the present study deals with a

quantitative description of MR-images and the corre-

lation with sensory texture quality attributes of a food

item. The study clearly shows that features extracted

from MR-images of raw potatoes using different image

texture analysis methods are able to classify the sensory
texture variation in five potato varieties and to predict

the sensory texture attributes in the cooked potatoes.

Especially the perception of hardness and adhesiveness

can be predicted with a high degree of explanation,

while moistness can only be predicted to a certain extent.

In contrast, neither the sensory attributes of mealiness

and graininess nor the specific gravity of the cooked and

the raw potatoes could be predicted with the used ap-
proach.

Moreover, the present study showed that character-

istics obtained by MR-imaging on raw potatoes provide

structural/anatomic information of importance for sen-

sory perception of texture in cooked potatoes.

Although the study is of somehow preliminary na-

ture, it displays the high potential of MR-imaging as a

future method for quantitative quality evaluation. Fi-
nally, the success obtained using image analysis on MR-

imaging data from potatoes, as a model food, in relation

to a better prediction of food quality seems to guarantee

that quality templates for subsequent calibration of the

MR-imaging instrument can be developed, thereby en-

abling a sorting for desired quality attributes.
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