

Technical University of Lodz

Institute of Electronics

Radius Estimation in Angiograms using Multiscale Vesselness Function

Piotr M. Szczypiński Institute of Electronics, Lodz University of Technology, Lodz, Poland

23RD International Conference on Computational Science 3-5 July, 2023

2023

Previous work and motivation

2013-2016: NCN 2013/08/M/ST7/00943 *Numerical modeling of the cerebral venous and arterial system on a macro- and mesoscopic scale from three-dimensional magnetic resonance images*

2015-2017: NCN ST7/OPUS-8 The development of numerical methods for modeling and evaluation of renal perfusion using magnetic resonance imaging.

NCN - National Science Centre in Poland

MRA Input

MRA Input

Ray-casting approach

Ray-casting approach

Requirements:

- 1. finding a centerline (center point + direction),
- 2. finding a cross-section orthogonal to the centerline,
- 3. the method of locating the vessel wall.

Requirements:1. building a 3D surface model,2. finding intersection of the ray with the wall.

Andrzej Materka, et al. *Automated modeling of tubular blood vessels in 3D MR angiography images*. 9th International Symposium on Image and Signal Processing and Analysis (ISPA). IEEE, 2015.

Requirements:

- 1. computation of cross-sectional image,
- 2. finding brightness profile,
- 3. fitting the *erfc* to the profile.

The goal

The goal

Vesselness function

İCCS 2023

Sato, Yoshinobu, et al. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. CVRMed-MRCAS'97. Springer, Berlin, Heidelberg, 1997.

İEE5 2023

Vesselness function

Cross section

r = 5

 $\sigma = 2$ $\sigma = 5$ $\sigma = 10$

Multiscale vesselness

Sigma to radius relation

r = 5

Cross

P

Sigma to radius relation in logarithmic scale

The model

 $\kappa = 17.289, \, \omega = 0.03411 \text{ and } \eta = 432$

The algorithm

19/27

1. Select a point, preferably on the centerline of the vessel, 2. Compute vesselness at this point for multiple σ scales, 3. Fit the formula $f(\sigma; A, r)$ to the computed values, 4. Use the parameter *r* as an estimate of the radius

These steps are repeated for all points along the centerlines.

Validation of the method

Radius estimation from multiscale vesselness (REMV)

Cross-sectional ray-casting with erfc matching (CREM)

Cross-sectional ray-casting in binary image (CRB)

Artificial images of pipes

Artificial images of pipes

Radius	Noise	CREM	CRB	REMV
1	1	1.52	0.92	1.02
1	5	1.51	0.93	1.03
1	13	1.44	0.94	1.06
5	1	5.01	4.91	4.85
5	5	5.01	4.91	4.86
5	13	5.01	4.90	4.86
13	1	12.94	12.91	12.63
13	5	12.44	12.91	12.64
13	13	8.21	12.90	12.64
	Time:	02:06:41	00:00:39	00:18:36

İEE5 2023

Artificial images of pipes

Radius	Noise	CREM	CRB	REMV
1	1	1.52	0.92	1.02
1	5	1.51	0.93	1.03
1	13	1.44	0.94	1.06
5	1	5.01	4.91	4.85
5	5	5.01	4.91	4.86
5	13	5.01	4.90	4.86
13	1	12.94	12.91	12.63
13	5	12.44	12.91	12.64
13	13	8.21	12.90	12.64
	Time:	02:06:41	00:00:39	00:18:36

Bifurcation

İEE5 2023

MRA

2023

- 1. The equation relating the parameter σ to the radius *r* has been determined.
- 2. A new algorithm for estimating the radius has been developed.
- 3. The new algorithm has been validated and compared with reference methods.
- 4. The algorithms have been implemented and are available as open source.

http://www.eletel.p.lodz.pl/pms/SoftwareVesselKnife.html https://gitlab.com/vesselknife/vesselknife/tree/master

Conclusions

27/27

The developed REMV algorithm:

- 1. Does not require computation of the vessel's cross-section.
- 2. Is computationally efficient.
- 3. Accurately estimates radii of relatively thin blood vessels.
- 4. Exhibits higher resistance to noise compared to the *erfc* fitting method.

